清洁杂乱和二元分式填料

Ahmad Abdi, G. Cornuéjols, B. Guenin, L. Tunçel
{"title":"清洁杂乱和二元分式填料","authors":"Ahmad Abdi, G. Cornuéjols, B. Guenin, L. Tunçel","doi":"10.1137/21m1397325","DOIUrl":null,"url":null,"abstract":"A vector is dyadic if each of its entries is a dyadic rational number, i.e., an integer multiple of 1 2k for some nonnegative integer k. We prove that every clean clutter with a covering number of at least two has a dyadic fractional packing of value two. This result is best possible for there exist clean clutters with a covering number of three and no dyadic fractional packing of value three. Examples of clean clutters include ideal clutters, binary clutters, and clutters without an intersecting minor. Our proof is constructive and leads naturally to an albeit exponential algorithm. We improve the running time to quasi-polynomial in the rank of the input, and to polynomial in the binary case.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"2012 1","pages":"1012-1037"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Clean Clutters and Dyadic Fractional Packings\",\"authors\":\"Ahmad Abdi, G. Cornuéjols, B. Guenin, L. Tunçel\",\"doi\":\"10.1137/21m1397325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A vector is dyadic if each of its entries is a dyadic rational number, i.e., an integer multiple of 1 2k for some nonnegative integer k. We prove that every clean clutter with a covering number of at least two has a dyadic fractional packing of value two. This result is best possible for there exist clean clutters with a covering number of three and no dyadic fractional packing of value three. Examples of clean clutters include ideal clutters, binary clutters, and clutters without an intersecting minor. Our proof is constructive and leads naturally to an albeit exponential algorithm. We improve the running time to quasi-polynomial in the rank of the input, and to polynomial in the binary case.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"2012 1\",\"pages\":\"1012-1037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1397325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1397325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

如果一个矢量的每一个分量都是一个并进有理数,即对于某个非负整数k,是12k的整数倍,那么它就是并进的。我们证明了每一个覆盖数至少为2的整洁杂波都有一个值为2的并进分数填充。当存在覆盖数为3的干净杂波,且不存在值为3的二元分数填充时,此结果是最好的。干净杂波的例子包括理想杂波、二元杂波和没有交叉次要杂波的杂波。我们的证明是建设性的,自然地导致了一个指数算法。在输入秩的情况下,我们将运行时间提高到拟多项式,在二进制的情况下,我们将运行时间提高到多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clean Clutters and Dyadic Fractional Packings
A vector is dyadic if each of its entries is a dyadic rational number, i.e., an integer multiple of 1 2k for some nonnegative integer k. We prove that every clean clutter with a covering number of at least two has a dyadic fractional packing of value two. This result is best possible for there exist clean clutters with a covering number of three and no dyadic fractional packing of value three. Examples of clean clutters include ideal clutters, binary clutters, and clutters without an intersecting minor. Our proof is constructive and leads naturally to an albeit exponential algorithm. We improve the running time to quasi-polynomial in the rank of the input, and to polynomial in the binary case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信