估算非平稳状态下洪水复发的不确定性

Pub Date : 2023-08-11 DOI:10.1590/2318-0331.282320230031
Yan Ranny Machado Gomes, Laís de Almeida Marques, C. F. Souza
{"title":"估算非平稳状态下洪水复发的不确定性","authors":"Yan Ranny Machado Gomes, Laís de Almeida Marques, C. F. Souza","doi":"10.1590/2318-0331.282320230031","DOIUrl":null,"url":null,"abstract":"Abstract Assuming non-stationarity in flood frequency models is still controversial due to uncertainty in estimates. In this study, a hierarchical Bayesian framework for flood frequency analysis is presented without assuming the stationarity hypothesis. We account data and model uncertainty in all modelling steps and use the Pardo River, Brazil, as study case. Results showed the presence of increasing trends in floods in Pardo River. The stationary model underestimated floods compared to the non-stationary model. Physical-based covariates models performed better than time-based showing the importance of adding physical covariates to explain the trend behavior. The presented model is adaptable to other case. Finally, this study provided guidance for the flood recurrence estimation under non-stationary conditions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating flood recurrence uncertainty for non-stationary regimes\",\"authors\":\"Yan Ranny Machado Gomes, Laís de Almeida Marques, C. F. Souza\",\"doi\":\"10.1590/2318-0331.282320230031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Assuming non-stationarity in flood frequency models is still controversial due to uncertainty in estimates. In this study, a hierarchical Bayesian framework for flood frequency analysis is presented without assuming the stationarity hypothesis. We account data and model uncertainty in all modelling steps and use the Pardo River, Brazil, as study case. Results showed the presence of increasing trends in floods in Pardo River. The stationary model underestimated floods compared to the non-stationary model. Physical-based covariates models performed better than time-based showing the importance of adding physical covariates to explain the trend behavior. The presented model is adaptable to other case. Finally, this study provided guidance for the flood recurrence estimation under non-stationary conditions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2318-0331.282320230031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.282320230031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要洪水频率模型的非平稳性假设由于估算结果的不确定性仍然存在争议。在此研究中,提出了一种不考虑平稳性假设的分层贝叶斯洪水频率分析框架。我们在所有建模步骤中考虑数据和模型的不确定性,并使用巴西的Pardo河作为研究案例。结果表明,帕尔多河洪水呈增加趋势。与非平稳模型相比,平稳模型低估了洪水。基于物理的协变量模型比基于时间的模型表现得更好,这表明添加物理协变量来解释趋势行为的重要性。该模型适用于其他情况。最后,该研究为非平稳条件下的洪水再发估计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Estimating flood recurrence uncertainty for non-stationary regimes
Abstract Assuming non-stationarity in flood frequency models is still controversial due to uncertainty in estimates. In this study, a hierarchical Bayesian framework for flood frequency analysis is presented without assuming the stationarity hypothesis. We account data and model uncertainty in all modelling steps and use the Pardo River, Brazil, as study case. Results showed the presence of increasing trends in floods in Pardo River. The stationary model underestimated floods compared to the non-stationary model. Physical-based covariates models performed better than time-based showing the importance of adding physical covariates to explain the trend behavior. The presented model is adaptable to other case. Finally, this study provided guidance for the flood recurrence estimation under non-stationary conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信