随机定位+ Stieltjes势垒= log-Sobolev的紧界

Y. Lee, S. Vempala
{"title":"随机定位+ Stieltjes势垒= log-Sobolev的紧界","authors":"Y. Lee, S. Vempala","doi":"10.1145/3188745.3188866","DOIUrl":null,"url":null,"abstract":"Logarithmic Sobolev inequalities are a powerful way to estimate the rate of convergence of Markov chains and to derive concentration inequalities on distributions. We prove that the log-Sobolev constant of any isotropic logconcave density in Rn with support of diameter D is Ω(1/D), resolving a question posed by Frieze and Kannan in 1997. This is asymptotically the best possible estimate and improves on the previous bound of Ω(1/D2) by Kannan-Lovász-Montenegro. It follows that for any isotropic logconcave density, the ball walk with step size δ=Θ(1/√n) mixes in O*(n2D) proper steps from any starting point. This improves on the previous best bound of O*(n2D2) and is also asymptotically tight. The new bound leads to the following refined large deviation inequality for an L-Lipschitz function g over an isotropic logconcave density p: for any t>0, [complex formula not displayed] where ḡ is the median or mean of g for x∼ p; this improves on previous bounds by Paouris and by Guedon-Milman. Our main proof is based on stochastic localization together with a Stieltjes-type barrier function.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Stochastic localization + Stieltjes barrier = tight bound for log-Sobolev\",\"authors\":\"Y. Lee, S. Vempala\",\"doi\":\"10.1145/3188745.3188866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logarithmic Sobolev inequalities are a powerful way to estimate the rate of convergence of Markov chains and to derive concentration inequalities on distributions. We prove that the log-Sobolev constant of any isotropic logconcave density in Rn with support of diameter D is Ω(1/D), resolving a question posed by Frieze and Kannan in 1997. This is asymptotically the best possible estimate and improves on the previous bound of Ω(1/D2) by Kannan-Lovász-Montenegro. It follows that for any isotropic logconcave density, the ball walk with step size δ=Θ(1/√n) mixes in O*(n2D) proper steps from any starting point. This improves on the previous best bound of O*(n2D2) and is also asymptotically tight. The new bound leads to the following refined large deviation inequality for an L-Lipschitz function g over an isotropic logconcave density p: for any t>0, [complex formula not displayed] where ḡ is the median or mean of g for x∼ p; this improves on previous bounds by Paouris and by Guedon-Milman. Our main proof is based on stochastic localization together with a Stieltjes-type barrier function.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

对数索博列夫不等式是估计马尔可夫链收敛速度和推导分布上的集中不等式的有力方法。我们证明了在直径为D的支持下,Rn中任何各向同性对数凹密度的log-Sobolev常数为Ω(1/D),解决了Frieze和Kannan在1997年提出的问题。这是渐近的最佳估计,并且在Ω(1/D2)的上一个边界上改进了Kannan-Lovász-Montenegro。由此可见,对于任何各向同性对数凹密度,步长δ=Θ(1/√n)的球步从任何起点混合为O*(n2D)步长。这改进了先前的O*(n2D2)的最佳界,并且也是渐近紧的。新的界导致了L-Lipschitz函数g在各向同性对数凹密度p上的以下改进的大偏差不等式:对于任何t>0,[未显示的复杂公式],其中,z为x ~ p的g的中位数或平均值;这改进了Paouris和Guedon-Milman之前的边界。我们的主要证明是基于随机局部化和stieltjess型势垒函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic localization + Stieltjes barrier = tight bound for log-Sobolev
Logarithmic Sobolev inequalities are a powerful way to estimate the rate of convergence of Markov chains and to derive concentration inequalities on distributions. We prove that the log-Sobolev constant of any isotropic logconcave density in Rn with support of diameter D is Ω(1/D), resolving a question posed by Frieze and Kannan in 1997. This is asymptotically the best possible estimate and improves on the previous bound of Ω(1/D2) by Kannan-Lovász-Montenegro. It follows that for any isotropic logconcave density, the ball walk with step size δ=Θ(1/√n) mixes in O*(n2D) proper steps from any starting point. This improves on the previous best bound of O*(n2D2) and is also asymptotically tight. The new bound leads to the following refined large deviation inequality for an L-Lipschitz function g over an isotropic logconcave density p: for any t>0, [complex formula not displayed] where ḡ is the median or mean of g for x∼ p; this improves on previous bounds by Paouris and by Guedon-Milman. Our main proof is based on stochastic localization together with a Stieltjes-type barrier function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信