{"title":"随机定位+ Stieltjes势垒= log-Sobolev的紧界","authors":"Y. Lee, S. Vempala","doi":"10.1145/3188745.3188866","DOIUrl":null,"url":null,"abstract":"Logarithmic Sobolev inequalities are a powerful way to estimate the rate of convergence of Markov chains and to derive concentration inequalities on distributions. We prove that the log-Sobolev constant of any isotropic logconcave density in Rn with support of diameter D is Ω(1/D), resolving a question posed by Frieze and Kannan in 1997. This is asymptotically the best possible estimate and improves on the previous bound of Ω(1/D2) by Kannan-Lovász-Montenegro. It follows that for any isotropic logconcave density, the ball walk with step size δ=Θ(1/√n) mixes in O*(n2D) proper steps from any starting point. This improves on the previous best bound of O*(n2D2) and is also asymptotically tight. The new bound leads to the following refined large deviation inequality for an L-Lipschitz function g over an isotropic logconcave density p: for any t>0, [complex formula not displayed] where ḡ is the median or mean of g for x∼ p; this improves on previous bounds by Paouris and by Guedon-Milman. Our main proof is based on stochastic localization together with a Stieltjes-type barrier function.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Stochastic localization + Stieltjes barrier = tight bound for log-Sobolev\",\"authors\":\"Y. Lee, S. Vempala\",\"doi\":\"10.1145/3188745.3188866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logarithmic Sobolev inequalities are a powerful way to estimate the rate of convergence of Markov chains and to derive concentration inequalities on distributions. We prove that the log-Sobolev constant of any isotropic logconcave density in Rn with support of diameter D is Ω(1/D), resolving a question posed by Frieze and Kannan in 1997. This is asymptotically the best possible estimate and improves on the previous bound of Ω(1/D2) by Kannan-Lovász-Montenegro. It follows that for any isotropic logconcave density, the ball walk with step size δ=Θ(1/√n) mixes in O*(n2D) proper steps from any starting point. This improves on the previous best bound of O*(n2D2) and is also asymptotically tight. The new bound leads to the following refined large deviation inequality for an L-Lipschitz function g over an isotropic logconcave density p: for any t>0, [complex formula not displayed] where ḡ is the median or mean of g for x∼ p; this improves on previous bounds by Paouris and by Guedon-Milman. Our main proof is based on stochastic localization together with a Stieltjes-type barrier function.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stochastic localization + Stieltjes barrier = tight bound for log-Sobolev
Logarithmic Sobolev inequalities are a powerful way to estimate the rate of convergence of Markov chains and to derive concentration inequalities on distributions. We prove that the log-Sobolev constant of any isotropic logconcave density in Rn with support of diameter D is Ω(1/D), resolving a question posed by Frieze and Kannan in 1997. This is asymptotically the best possible estimate and improves on the previous bound of Ω(1/D2) by Kannan-Lovász-Montenegro. It follows that for any isotropic logconcave density, the ball walk with step size δ=Θ(1/√n) mixes in O*(n2D) proper steps from any starting point. This improves on the previous best bound of O*(n2D2) and is also asymptotically tight. The new bound leads to the following refined large deviation inequality for an L-Lipschitz function g over an isotropic logconcave density p: for any t>0, [complex formula not displayed] where ḡ is the median or mean of g for x∼ p; this improves on previous bounds by Paouris and by Guedon-Milman. Our main proof is based on stochastic localization together with a Stieltjes-type barrier function.