关于大几何拉普拉斯积分变换

Numan Yalçin, Sinem Kaymak
{"title":"关于大几何拉普拉斯积分变换","authors":"Numan Yalçin, Sinem Kaymak","doi":"10.21597/jist.1283580","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to mention the Laplace integral transform in bigeometric analysis, which is one of the non-Newtonian analysis by using the fundamental definitions and theorems of the Laplace integral transform, which is one of the integral transform methods of classical analysis. First of all, the concept of exponential arithmetic, which forms the basis of non Newtonian analysis, is given. As in classical analysis, definitions of the concepts of bigeometric limit, bigeometric continuity, bigeometric derivative and bigeometric integral are given in bigeometric analysis. Here, the definition of the bigeometric Laplace integral transform in bigeometric analysis is given. Then, some basic concepts and theorems of the bigeometric Laplace integral transform are given. For this purpose, the definitions of the concepts of bigeometric derivative and bigeometric indefinite integral and bigeometric definite integral in bigeometric analysis and the properties of these concepts are used. In addition, the properties of the bigeometric Laplace integral transform are investigated. Finally, solutions of bigeometric linear differential equations are investigated with the help of the bigeometric Laplace integral transform.","PeriodicalId":17353,"journal":{"name":"Journal of the Institute of Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Bigeometric Laplace Integral Transform\",\"authors\":\"Numan Yalçin, Sinem Kaymak\",\"doi\":\"10.21597/jist.1283580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to mention the Laplace integral transform in bigeometric analysis, which is one of the non-Newtonian analysis by using the fundamental definitions and theorems of the Laplace integral transform, which is one of the integral transform methods of classical analysis. First of all, the concept of exponential arithmetic, which forms the basis of non Newtonian analysis, is given. As in classical analysis, definitions of the concepts of bigeometric limit, bigeometric continuity, bigeometric derivative and bigeometric integral are given in bigeometric analysis. Here, the definition of the bigeometric Laplace integral transform in bigeometric analysis is given. Then, some basic concepts and theorems of the bigeometric Laplace integral transform are given. For this purpose, the definitions of the concepts of bigeometric derivative and bigeometric indefinite integral and bigeometric definite integral in bigeometric analysis and the properties of these concepts are used. In addition, the properties of the bigeometric Laplace integral transform are investigated. Finally, solutions of bigeometric linear differential equations are investigated with the help of the bigeometric Laplace integral transform.\",\"PeriodicalId\":17353,\"journal\":{\"name\":\"Journal of the Institute of Science and Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21597/jist.1283580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21597/jist.1283580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是利用经典分析中的积分变换方法之一——拉普拉斯积分变换的基本定义和定理,提一提非牛顿分析中的非几何分析中的拉普拉斯积分变换。首先,给出了指数算法的概念,它是非牛顿分析的基础。与经典分析一样,在几何分析中给出了几何极限、几何连续、几何导数和几何积分等概念的定义。本文给出了大几何拉普拉斯积分变换在大几何分析中的定义。然后给出了大几何拉普拉斯积分变换的一些基本概念和定理。为此,使用了几何分析中几何导数、几何不定积分、几何定积分等概念的定义以及这些概念的性质。此外,还研究了大几何拉普拉斯积分变换的性质。最后,利用大几何拉普拉斯积分变换研究了大几何线性微分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Bigeometric Laplace Integral Transform
The purpose of this study is to mention the Laplace integral transform in bigeometric analysis, which is one of the non-Newtonian analysis by using the fundamental definitions and theorems of the Laplace integral transform, which is one of the integral transform methods of classical analysis. First of all, the concept of exponential arithmetic, which forms the basis of non Newtonian analysis, is given. As in classical analysis, definitions of the concepts of bigeometric limit, bigeometric continuity, bigeometric derivative and bigeometric integral are given in bigeometric analysis. Here, the definition of the bigeometric Laplace integral transform in bigeometric analysis is given. Then, some basic concepts and theorems of the bigeometric Laplace integral transform are given. For this purpose, the definitions of the concepts of bigeometric derivative and bigeometric indefinite integral and bigeometric definite integral in bigeometric analysis and the properties of these concepts are used. In addition, the properties of the bigeometric Laplace integral transform are investigated. Finally, solutions of bigeometric linear differential equations are investigated with the help of the bigeometric Laplace integral transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信