信息论隐私监管机构

Hsiang Hsu, S. Asoodeh, F. Calmon
{"title":"信息论隐私监管机构","authors":"Hsiang Hsu, S. Asoodeh, F. Calmon","doi":"10.1109/ISIT.2019.8849440","DOIUrl":null,"url":null,"abstract":"Given a dataset comprised of individual-level data, we consider the problem of identifying samples that may be disclosed without incurring a privacy risk. We address this challenge by designing a mapping that assigns a \"privacy-risk score\" to each sample. This mapping, called the privacy watchdog, is based on a sample-wise information leakage measure called the information density, deemed here lift privacy. We show that lift privacy is closely related to well-known information-theoretic privacy metrics. Moreover, we demonstrate how the privacy watchdog can be implemented using the Donsker-Varadhan representation of KL-divergence. Finally, we illustrate this approach on a real-world dataset.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"11 1","pages":"552-556"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Information-Theoretic Privacy Watchdogs\",\"authors\":\"Hsiang Hsu, S. Asoodeh, F. Calmon\",\"doi\":\"10.1109/ISIT.2019.8849440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a dataset comprised of individual-level data, we consider the problem of identifying samples that may be disclosed without incurring a privacy risk. We address this challenge by designing a mapping that assigns a \\\"privacy-risk score\\\" to each sample. This mapping, called the privacy watchdog, is based on a sample-wise information leakage measure called the information density, deemed here lift privacy. We show that lift privacy is closely related to well-known information-theoretic privacy metrics. Moreover, we demonstrate how the privacy watchdog can be implemented using the Donsker-Varadhan representation of KL-divergence. Finally, we illustrate this approach on a real-world dataset.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"11 1\",\"pages\":\"552-556\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

给定由个人层面数据组成的数据集,我们考虑识别可能在不产生隐私风险的情况下披露的样本的问题。我们通过设计一个映射来解决这个挑战,该映射为每个样本分配一个“隐私风险评分”。这种映射被称为隐私看门狗,是基于一种被称为信息密度的样本信息泄漏度量,在这里被视为提升隐私。我们表明电梯隐私与众所周知的信息论隐私指标密切相关。此外,我们还演示了如何使用KL-divergence的Donsker-Varadhan表示来实现隐私监督。最后,我们在一个真实的数据集上说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information-Theoretic Privacy Watchdogs
Given a dataset comprised of individual-level data, we consider the problem of identifying samples that may be disclosed without incurring a privacy risk. We address this challenge by designing a mapping that assigns a "privacy-risk score" to each sample. This mapping, called the privacy watchdog, is based on a sample-wise information leakage measure called the information density, deemed here lift privacy. We show that lift privacy is closely related to well-known information-theoretic privacy metrics. Moreover, we demonstrate how the privacy watchdog can be implemented using the Donsker-Varadhan representation of KL-divergence. Finally, we illustrate this approach on a real-world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信