局部有限且在半单部分上具有有限复数的李代数模

IF 0.8 2区 数学 Q2 MATHEMATICS
V. Mazorchuk, Rafael Mrðen
{"title":"局部有限且在半单部分上具有有限复数的李代数模","authors":"V. Mazorchuk, Rafael Mrðen","doi":"10.1017/nmj.2021.8","DOIUrl":null,"url":null,"abstract":"Abstract For a finite-dimensional Lie algebra \n$\\mathfrak {L}$\n over \n$\\mathbb {C}$\n with a fixed Levi decomposition \n$\\mathfrak {L} = \\mathfrak {g} \\ltimes \\mathfrak {r}$\n , where \n$\\mathfrak {g}$\n is semisimple, we investigate \n$\\mathfrak {L}$\n -modules which decompose, as \n$\\mathfrak {g}$\n -modules, into a direct sum of simple finite-dimensional \n$\\mathfrak {g}$\n -modules with finite multiplicities. We call such modules \n$\\mathfrak {g}$\n -Harish-Chandra modules. We give a complete classification of simple \n$\\mathfrak {g}$\n -Harish-Chandra modules for the Takiff Lie algebra associated to \n$\\mathfrak {g} = \\mathfrak {sl}_2$\n , and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright’s and Arkhipov’s completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple \n$\\mathfrak {g}$\n -Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff \n$\\mathfrak {sl}_2$\n and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple \n$\\mathfrak {g}$\n -Harish-Chandra modules.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"41 1","pages":"430 - 470"},"PeriodicalIF":0.8000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LIE ALGEBRA MODULES WHICH ARE LOCALLY FINITE AND WITH FINITE MULTIPLICITIES OVER THE SEMISIMPLE PART\",\"authors\":\"V. Mazorchuk, Rafael Mrðen\",\"doi\":\"10.1017/nmj.2021.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a finite-dimensional Lie algebra \\n$\\\\mathfrak {L}$\\n over \\n$\\\\mathbb {C}$\\n with a fixed Levi decomposition \\n$\\\\mathfrak {L} = \\\\mathfrak {g} \\\\ltimes \\\\mathfrak {r}$\\n , where \\n$\\\\mathfrak {g}$\\n is semisimple, we investigate \\n$\\\\mathfrak {L}$\\n -modules which decompose, as \\n$\\\\mathfrak {g}$\\n -modules, into a direct sum of simple finite-dimensional \\n$\\\\mathfrak {g}$\\n -modules with finite multiplicities. We call such modules \\n$\\\\mathfrak {g}$\\n -Harish-Chandra modules. We give a complete classification of simple \\n$\\\\mathfrak {g}$\\n -Harish-Chandra modules for the Takiff Lie algebra associated to \\n$\\\\mathfrak {g} = \\\\mathfrak {sl}_2$\\n , and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright’s and Arkhipov’s completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple \\n$\\\\mathfrak {g}$\\n -Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff \\n$\\\\mathfrak {sl}_2$\\n and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple \\n$\\\\mathfrak {g}$\\n -Harish-Chandra modules.\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"41 1\",\"pages\":\"430 - 470\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2021.8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2021.8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要对于一个有限维李代数$\mathfrak {L}$ / $\mathbb {C}$具有固定的李维分解$\mathfrak {L} = \mathfrak {g} \ L乘以\mathfrak {r}$,其中$\mathfrak {g}$是半简单的,我们研究$\mathfrak {L}$ -模块,它分解为$\mathfrak {g}$ -模块,分解为具有有限乘数的简单有限维$\mathfrak {g}$ -模块的直接和。我们称这样的模块为$\mathfrak {g}$ -Harish-Chandra模块。本文给出了$\mathfrak {g} = \mathfrak {sl}_2$对应的Takiff李代数$\mathfrak {g}$ -Harish-Chandra模块的完全分类,以及Schrödinger李代数$\mathfrak {sl}_2$的部分分类结果。Enright和Arkhipov补全函子的一个改编版本在我们的论证中起着至关重要的作用。此外,对于Takiff $\mathfrak {sl}_2$和Schrödinger Lie代数,我们计算了无限维简单$\mathfrak {g}$ - harsh - chandra模及其湮灭子在通用包络代数中的第一个扩展群。在一般情况下,给出了无限维简单$\mathfrak {g}$ -Harish-Chandra模存在的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LIE ALGEBRA MODULES WHICH ARE LOCALLY FINITE AND WITH FINITE MULTIPLICITIES OVER THE SEMISIMPLE PART
Abstract For a finite-dimensional Lie algebra $\mathfrak {L}$ over $\mathbb {C}$ with a fixed Levi decomposition $\mathfrak {L} = \mathfrak {g} \ltimes \mathfrak {r}$ , where $\mathfrak {g}$ is semisimple, we investigate $\mathfrak {L}$ -modules which decompose, as $\mathfrak {g}$ -modules, into a direct sum of simple finite-dimensional $\mathfrak {g}$ -modules with finite multiplicities. We call such modules $\mathfrak {g}$ -Harish-Chandra modules. We give a complete classification of simple $\mathfrak {g}$ -Harish-Chandra modules for the Takiff Lie algebra associated to $\mathfrak {g} = \mathfrak {sl}_2$ , and for the Schrödinger Lie algebra, and obtain some partial results in other cases. An adapted version of Enright’s and Arkhipov’s completion functors plays a crucial role in our arguments. Moreover, we calculate the first extension groups of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules and their annihilators in the universal enveloping algebra, for the Takiff $\mathfrak {sl}_2$ and the Schrödinger Lie algebra. In the general case, we give a sufficient condition for the existence of infinite-dimensional simple $\mathfrak {g}$ -Harish-Chandra modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信