网络表示学习:从预处理、特征提取到节点嵌入

Jingya Zhou, Ling Liu, Wenqi Wei, Jianxi Fan
{"title":"网络表示学习:从预处理、特征提取到节点嵌入","authors":"Jingya Zhou, Ling Liu, Wenqi Wei, Jianxi Fan","doi":"10.1145/3491206","DOIUrl":null,"url":null,"abstract":"Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks. Dozens of NRL algorithms have been reported in the literature. Most of them focus on learning node embeddings for homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics captured and used for learning node embedding. This article reviews the design principles and the different node embedding techniques for NRL over homogeneous networks. To facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework to divide and generalize the node embedding learning process on a given network into preprocessing steps, node feature extraction steps, and node embedding model training for an NRL task such as link prediction and node clustering. With this unifying reference framework, we highlight the representative methods, models, and techniques used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners gain an in-depth understanding of different NRL techniques but also provides practical guidelines for designing and developing the next generation of NRL algorithms and systems.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"116 1","pages":"1 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding\",\"authors\":\"Jingya Zhou, Ling Liu, Wenqi Wei, Jianxi Fan\",\"doi\":\"10.1145/3491206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks. Dozens of NRL algorithms have been reported in the literature. Most of them focus on learning node embeddings for homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics captured and used for learning node embedding. This article reviews the design principles and the different node embedding techniques for NRL over homogeneous networks. To facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework to divide and generalize the node embedding learning process on a given network into preprocessing steps, node feature extraction steps, and node embedding model training for an NRL task such as link prediction and node clustering. With this unifying reference framework, we highlight the representative methods, models, and techniques used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners gain an in-depth understanding of different NRL techniques but also provides practical guidelines for designing and developing the next generation of NRL algorithms and systems.\",\"PeriodicalId\":7000,\"journal\":{\"name\":\"ACM Computing Surveys (CSUR)\",\"volume\":\"116 1\",\"pages\":\"1 - 35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys (CSUR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3491206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3491206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

网络表示学习(NRL)推动了传统的社交网络、知识图以及复杂生物医学和物理信息网络的图挖掘。文献中已经报道了数十种NRL算法。它们大多关注同构网络的学习节点嵌入,但它们在特定的编码方案和捕获和用于学习节点嵌入的特定类型的节点语义方面有所不同。本文综述了同构网络上NRL的设计原则和不同的节点嵌入技术。为了便于不同节点嵌入算法的比较,我们引入了一个统一的参考框架,将给定网络上的节点嵌入学习过程划分和概括为预处理步骤、节点特征提取步骤和节点嵌入模型训练步骤,用于NRL任务(如链接预测和节点聚类)。通过这个统一的参考框架,我们重点介绍了节点嵌入模型学习过程中不同阶段使用的代表性方法、模型和技术。这项调查不仅有助于研究人员和实践者深入了解不同的NRL技术,而且为设计和开发下一代NRL算法和系统提供了实用的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Representation Learning: From Preprocessing, Feature Extraction to Node Embedding
Network representation learning (NRL) advances the conventional graph mining of social networks, knowledge graphs, and complex biomedical and physics information networks. Dozens of NRL algorithms have been reported in the literature. Most of them focus on learning node embeddings for homogeneous networks, but they differ in the specific encoding schemes and specific types of node semantics captured and used for learning node embedding. This article reviews the design principles and the different node embedding techniques for NRL over homogeneous networks. To facilitate the comparison of different node embedding algorithms, we introduce a unified reference framework to divide and generalize the node embedding learning process on a given network into preprocessing steps, node feature extraction steps, and node embedding model training for an NRL task such as link prediction and node clustering. With this unifying reference framework, we highlight the representative methods, models, and techniques used at different stages of the node embedding model learning process. This survey not only helps researchers and practitioners gain an in-depth understanding of different NRL techniques but also provides practical guidelines for designing and developing the next generation of NRL algorithms and systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信