一种基于粒子群优化的鲁棒盲三维网格水印方法

M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien
{"title":"一种基于粒子群优化的鲁棒盲三维网格水印方法","authors":"M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien","doi":"10.4018/ijskd.2020010102","DOIUrl":null,"url":null,"abstract":"This article presents a robust 3D mesh watermarking approach, which adopts an optimization method of selecting watermark vertices for 3D mesh models. The proposed approach can enhance the imperceptibility of the watermarked model without affecting the robustness and capacity factors. The proposed watermark approach depends on an embedding algorithm that use a clustering strategy, based on K−means clustering algorithm in conjunction with the particle swarm optimization to divide the mesh model vertices into groups. Points of interest set (POIs) are selected from these clustered groups and mark it as watermark vertices where the (POIs) are invariant to most of the geometrical and connectivity attacks. Then, the proposed approach inserts the watermark bit stream in the decimal part of spherical coordinates for these selected watermark vertices. The experimental results confirm that the proposed approach proves its superiority compared with state-of-the-art techniques with respect to imperceptibility and robustness.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"10 1","pages":"24-48"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Robust and Blind 3D Mesh Watermarking Approach Based on Particle Swarm Optimization\",\"authors\":\"M. R. Mouhamed, Mona M. Soliman, A. Darwish, A. Hassanien\",\"doi\":\"10.4018/ijskd.2020010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a robust 3D mesh watermarking approach, which adopts an optimization method of selecting watermark vertices for 3D mesh models. The proposed approach can enhance the imperceptibility of the watermarked model without affecting the robustness and capacity factors. The proposed watermark approach depends on an embedding algorithm that use a clustering strategy, based on K−means clustering algorithm in conjunction with the particle swarm optimization to divide the mesh model vertices into groups. Points of interest set (POIs) are selected from these clustered groups and mark it as watermark vertices where the (POIs) are invariant to most of the geometrical and connectivity attacks. Then, the proposed approach inserts the watermark bit stream in the decimal part of spherical coordinates for these selected watermark vertices. The experimental results confirm that the proposed approach proves its superiority compared with state-of-the-art techniques with respect to imperceptibility and robustness.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"10 1\",\"pages\":\"24-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijskd.2020010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijskd.2020010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种鲁棒三维网格水印方法,该方法采用一种针对三维网格模型选择水印顶点的优化方法。该方法在不影响鲁棒性和容量因子的前提下增强了水印模型的不可感知性。所提出的水印方法依赖于一种嵌入算法,该算法使用基于K均值聚类算法的聚类策略,结合粒子群优化将网格模型顶点划分为组。从这些聚类组中选择兴趣点集(poi)并将其标记为水印顶点,其中(poi)对大多数几何攻击和连通性攻击都是不变的。然后,该方法将水印比特流插入到所选水印顶点的球坐标的小数部分。实验结果表明,该方法在不可感知性和鲁棒性方面具有较好的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust and Blind 3D Mesh Watermarking Approach Based on Particle Swarm Optimization
This article presents a robust 3D mesh watermarking approach, which adopts an optimization method of selecting watermark vertices for 3D mesh models. The proposed approach can enhance the imperceptibility of the watermarked model without affecting the robustness and capacity factors. The proposed watermark approach depends on an embedding algorithm that use a clustering strategy, based on K−means clustering algorithm in conjunction with the particle swarm optimization to divide the mesh model vertices into groups. Points of interest set (POIs) are selected from these clustered groups and mark it as watermark vertices where the (POIs) are invariant to most of the geometrical and connectivity attacks. Then, the proposed approach inserts the watermark bit stream in the decimal part of spherical coordinates for these selected watermark vertices. The experimental results confirm that the proposed approach proves its superiority compared with state-of-the-art techniques with respect to imperceptibility and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信