Sajid Farooq, G. Germano, K. Stancari, Rocío Raffaeli, M. Croce, Adela E. Croce, D. Zezell
{"title":"高光谱FTIR图像的三维判别分析","authors":"Sajid Farooq, G. Germano, K. Stancari, Rocío Raffaeli, M. Croce, Adela E. Croce, D. Zezell","doi":"10.1109/OMN/SBFotonIOPC58971.2023.10230933","DOIUrl":null,"url":null,"abstract":"Here, we apply a 3D discriminant analysis approach to analyze FTIR hyperspectral images of normal vs malignant Melanoma (MM) samples for skin cancer diagnosis. For this porpose we used 2 samples, for Normal (49k) and for MM(90k). Our results evidence the outstanding performance with accuracy up to 81% for big data (> 100k).","PeriodicalId":31141,"journal":{"name":"Netcom","volume":"31 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D Discriminant Analysis for Hyperspectral FTIR Images\",\"authors\":\"Sajid Farooq, G. Germano, K. Stancari, Rocío Raffaeli, M. Croce, Adela E. Croce, D. Zezell\",\"doi\":\"10.1109/OMN/SBFotonIOPC58971.2023.10230933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we apply a 3D discriminant analysis approach to analyze FTIR hyperspectral images of normal vs malignant Melanoma (MM) samples for skin cancer diagnosis. For this porpose we used 2 samples, for Normal (49k) and for MM(90k). Our results evidence the outstanding performance with accuracy up to 81% for big data (> 100k).\",\"PeriodicalId\":31141,\"journal\":{\"name\":\"Netcom\",\"volume\":\"31 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netcom\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netcom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 3D Discriminant Analysis for Hyperspectral FTIR Images
Here, we apply a 3D discriminant analysis approach to analyze FTIR hyperspectral images of normal vs malignant Melanoma (MM) samples for skin cancer diagnosis. For this porpose we used 2 samples, for Normal (49k) and for MM(90k). Our results evidence the outstanding performance with accuracy up to 81% for big data (> 100k).