缺失的15%的专利引用

Cyril Verluise, G. Cristelli, Kyle W. Higham, Gaétan de Rassenfosse
{"title":"缺失的15%的专利引用","authors":"Cyril Verluise, G. Cristelli, Kyle W. Higham, Gaétan de Rassenfosse","doi":"10.2139/ssrn.3754772","DOIUrl":null,"url":null,"abstract":"Patent citations are one of the most commonly-used metrics in the innovation literature. Leading uses of patent-to-patent citations are associated with the quantification of inventions' quality and the measurement of knowledgeflows. Due to their widespread availability, scholars have exploited citations listed on the front-page of patent documents. Citations appearing in the full-text of patent documents have been neglected. We apply modern machine learning methods to extract these citations from the text of USPTO patent documents. Overall, we are able to recover an additional 15 percent of patent citations that could not be found using only front-page data. We show that \"in-text\" citations bring a different type of information compared to front-page citations. They exhibit higher text-similarity to the citing patents and alter the ranking of patent importance. The dataset is available at patcit.io (CC-BY-4).","PeriodicalId":14586,"journal":{"name":"IO: Productivity","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Missing 15 Percent of Patent Citations\",\"authors\":\"Cyril Verluise, G. Cristelli, Kyle W. Higham, Gaétan de Rassenfosse\",\"doi\":\"10.2139/ssrn.3754772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patent citations are one of the most commonly-used metrics in the innovation literature. Leading uses of patent-to-patent citations are associated with the quantification of inventions' quality and the measurement of knowledgeflows. Due to their widespread availability, scholars have exploited citations listed on the front-page of patent documents. Citations appearing in the full-text of patent documents have been neglected. We apply modern machine learning methods to extract these citations from the text of USPTO patent documents. Overall, we are able to recover an additional 15 percent of patent citations that could not be found using only front-page data. We show that \\\"in-text\\\" citations bring a different type of information compared to front-page citations. They exhibit higher text-similarity to the citing patents and alter the ranking of patent importance. The dataset is available at patcit.io (CC-BY-4).\",\"PeriodicalId\":14586,\"journal\":{\"name\":\"IO: Productivity\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IO: Productivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3754772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IO: Productivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3754772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

专利引用是创新文献中最常用的指标之一。专利对专利引用的主要用途与发明质量的量化和知识流动的测量有关。由于它们的广泛可用性,学者们利用了专利文件首页上列出的引文。出现在专利文件全文中的引文被忽略了。我们应用现代机器学习方法从USPTO专利文件的文本中提取这些引文。总的来说,我们能够恢复仅使用首页数据无法找到的额外15%的专利引用。我们发现,与头版引文相比,“文本内”引文带来了不同类型的信息。它们与被引用的专利表现出更高的文本相似性,并改变了专利重要性的排名。该数据集可在patpatit上获得。io (CC-BY-4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Missing 15 Percent of Patent Citations
Patent citations are one of the most commonly-used metrics in the innovation literature. Leading uses of patent-to-patent citations are associated with the quantification of inventions' quality and the measurement of knowledgeflows. Due to their widespread availability, scholars have exploited citations listed on the front-page of patent documents. Citations appearing in the full-text of patent documents have been neglected. We apply modern machine learning methods to extract these citations from the text of USPTO patent documents. Overall, we are able to recover an additional 15 percent of patent citations that could not be found using only front-page data. We show that "in-text" citations bring a different type of information compared to front-page citations. They exhibit higher text-similarity to the citing patents and alter the ranking of patent importance. The dataset is available at patcit.io (CC-BY-4).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信