{"title":"光伏板参数辨识的改进斜渐近线法","authors":"Chen Wei, Lim Li Hong Idris","doi":"10.1109/PVSC.2018.8548156","DOIUrl":null,"url":null,"abstract":"A single-diode model is the most important and broadly used tool for PV module design and analysis. The model has 5 parameters to be identified from the I-V characteristics curves. However, due to the lack of explicit form of I or V with the unknown 5 parameters, parameter identification is very difficult. Recent progress in PV model identification are discussed in this paper with the simulation of MATLAB against the measured data from a real PV module. An improved Oblique Asymptote Method is then proposed and compared with existing identification methods. Test results show that the proposed method achieves lower RMSE with less knowledge of I - V data points.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"2 1","pages":"0386-0389"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Oblique Asymptote Method for Parameter Identification of PV Panels\",\"authors\":\"Chen Wei, Lim Li Hong Idris\",\"doi\":\"10.1109/PVSC.2018.8548156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single-diode model is the most important and broadly used tool for PV module design and analysis. The model has 5 parameters to be identified from the I-V characteristics curves. However, due to the lack of explicit form of I or V with the unknown 5 parameters, parameter identification is very difficult. Recent progress in PV model identification are discussed in this paper with the simulation of MATLAB against the measured data from a real PV module. An improved Oblique Asymptote Method is then proposed and compared with existing identification methods. Test results show that the proposed method achieves lower RMSE with less knowledge of I - V data points.\",\"PeriodicalId\":6558,\"journal\":{\"name\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"volume\":\"2 1\",\"pages\":\"0386-0389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2018.8548156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8548156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Oblique Asymptote Method for Parameter Identification of PV Panels
A single-diode model is the most important and broadly used tool for PV module design and analysis. The model has 5 parameters to be identified from the I-V characteristics curves. However, due to the lack of explicit form of I or V with the unknown 5 parameters, parameter identification is very difficult. Recent progress in PV model identification are discussed in this paper with the simulation of MATLAB against the measured data from a real PV module. An improved Oblique Asymptote Method is then proposed and compared with existing identification methods. Test results show that the proposed method achieves lower RMSE with less knowledge of I - V data points.