双气泡平均曲率流动的弱-强唯一性

IF 1.2 4区 数学 Q1 MATHEMATICS
S. Hensel, Tim Laux
{"title":"双气泡平均曲率流动的弱-强唯一性","authors":"S. Hensel, Tim Laux","doi":"10.4171/ifb/484","DOIUrl":null,"url":null,"abstract":"We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent work of Fischer et al. [arXiv:2003.05478v2] for any such cluster. This extends the two-dimensional construction to the threedimensional case of surfaces meeting along triple junctions.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"9 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Weak-strong uniqueness for the mean curvature flow of double bubbles\",\"authors\":\"S. Hensel, Tim Laux\",\"doi\":\"10.4171/ifb/484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent work of Fischer et al. [arXiv:2003.05478v2] for any such cluster. This extends the two-dimensional construction to the threedimensional case of surfaces meeting along triple junctions.\",\"PeriodicalId\":13863,\"journal\":{\"name\":\"Interfaces and Free Boundaries\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interfaces and Free Boundaries\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/484\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/484","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

导出了三维三线团簇多相平均曲率流的BV解的弱-强唯一性原理。我们的证明是基于Fischer et al. [arXiv: 2003.054778 v2]最近工作意义上的梯度流校准的显式构造。这将二维结构扩展到沿三重结的曲面相遇的三维情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak-strong uniqueness for the mean curvature flow of double bubbles
We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent work of Fischer et al. [arXiv:2003.05478v2] for any such cluster. This extends the two-dimensional construction to the threedimensional case of surfaces meeting along triple junctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信