扩展域Fq2上椭圆曲线上标量乘法的改进

Md. Al-Amin Khandaker, Y. Nogami
{"title":"扩展域Fq2上椭圆曲线上标量乘法的改进","authors":"Md. Al-Amin Khandaker, Y. Nogami","doi":"10.1109/ICCE-TW.2016.7520894","DOIUrl":null,"url":null,"abstract":"In elliptic curve cryptography (ECC), a scalar multiplication for rational point is the most time consuming operation. This paper proposes an efficient calculation for a scalar multiplication by applying Frobenious Mapping. Particularly, this paper deals with Barreto-Naehrig curve defined over extension field Fq2, where q = p6 and p is a large prime.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"7 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improvement of scalar multiplication on elliptic curve defined over extension field Fq2\",\"authors\":\"Md. Al-Amin Khandaker, Y. Nogami\",\"doi\":\"10.1109/ICCE-TW.2016.7520894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In elliptic curve cryptography (ECC), a scalar multiplication for rational point is the most time consuming operation. This paper proposes an efficient calculation for a scalar multiplication by applying Frobenious Mapping. Particularly, this paper deals with Barreto-Naehrig curve defined over extension field Fq2, where q = p6 and p is a large prime.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"7 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在椭圆曲线密码中,有理点的标量乘法运算是最耗时的运算。本文提出了一种利用Frobenious映射求解标量乘法的有效方法。特别地,本文讨论了在扩展域Fq2上定义的Barreto-Naehrig曲线,其中q = p6, p是一个大素数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improvement of scalar multiplication on elliptic curve defined over extension field Fq2
In elliptic curve cryptography (ECC), a scalar multiplication for rational point is the most time consuming operation. This paper proposes an efficient calculation for a scalar multiplication by applying Frobenious Mapping. Particularly, this paper deals with Barreto-Naehrig curve defined over extension field Fq2, where q = p6 and p is a large prime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信