执行策略对资源利用的建模影响

A. Poyda, M. Titov, A. Klimentov, J. Wells, S. Oral, K. De, D. Oleynik, S. Jha
{"title":"执行策略对资源利用的建模影响","authors":"A. Poyda, M. Titov, A. Klimentov, J. Wells, S. Oral, K. De, D. Oleynik, S. Jha","doi":"10.1109/eScience.2018.00085","DOIUrl":null,"url":null,"abstract":"The analysis of the hundreds of petabytes of raw and derived HEP (High Energy Physics) data will necessitate exascale computing. In addition to unprecedented volume, these data are distributed over hundreds of computing centers. In response to these application requirement, as well as performance requirement by using parallel processing (i.e., parallelism), and as a consequence of technology trends, there has been an increase in the uptake of supercomputers by HEP projects.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"126 1","pages":"340-340"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Impact of Execution Strategies on Resource Utilization\",\"authors\":\"A. Poyda, M. Titov, A. Klimentov, J. Wells, S. Oral, K. De, D. Oleynik, S. Jha\",\"doi\":\"10.1109/eScience.2018.00085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of the hundreds of petabytes of raw and derived HEP (High Energy Physics) data will necessitate exascale computing. In addition to unprecedented volume, these data are distributed over hundreds of computing centers. In response to these application requirement, as well as performance requirement by using parallel processing (i.e., parallelism), and as a consequence of technology trends, there has been an increase in the uptake of supercomputers by HEP projects.\",\"PeriodicalId\":6476,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"volume\":\"126 1\",\"pages\":\"340-340\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2018.00085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对数百pb的原始和衍生HEP(高能物理)数据的分析将需要百亿亿次计算。除了空前的数据量,这些数据分布在数百个计算中心。为了响应这些应用程序需求,以及使用并行处理(即并行性)的性能需求,以及作为技术趋势的结果,HEP项目对超级计算机的采用有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Impact of Execution Strategies on Resource Utilization
The analysis of the hundreds of petabytes of raw and derived HEP (High Energy Physics) data will necessitate exascale computing. In addition to unprecedented volume, these data are distributed over hundreds of computing centers. In response to these application requirement, as well as performance requirement by using parallel processing (i.e., parallelism), and as a consequence of technology trends, there has been an increase in the uptake of supercomputers by HEP projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信