基于精度和多样性加权的演化数据流集成

Yange Sun, Han Shao, Bencai Zhang
{"title":"基于精度和多样性加权的演化数据流集成","authors":"Yange Sun, Han Shao, Bencai Zhang","doi":"10.34028/iajit/19/1/11","DOIUrl":null,"url":null,"abstract":"Ensemble classification is an actively researched paradigm that has received much attention due to increasing real-world applications. The crucial issue of ensemble learning is to construct a pool of base classifiers with accuracy and diversity. In this paper, unlike conventional data-streams oriented ensemble methods, we propose a novel Measure via both Accuracy and Diversity (MAD) instead of one of them to supervise ensemble learning. Based on MAD, a novel online ensemble method called Accuracy and Diversity weighted Ensemble (ADE) effectively handles concept drift in data streams. ADE mainly uses the following three steps to construct a concept-drift oriented ensemble: for the current data window, 1) a new base classifier is constructed based on the current concept when drift detect, 2) MAD is used to measure the performance of ensemble members, and 3) a newly built classifier replaces the worst base classifier. If the newly constructed classifier is the worst one, the replacement has not occurred. Comparing with the state-of-art algorithms, ADE exceeds the current best-related algorithm by 2.38% in average classification accuracy. Experimental results show that the proposed method can effectively adapt to different types of drifts.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble based on accuracy and diversity weighting for evolving data streams\",\"authors\":\"Yange Sun, Han Shao, Bencai Zhang\",\"doi\":\"10.34028/iajit/19/1/11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble classification is an actively researched paradigm that has received much attention due to increasing real-world applications. The crucial issue of ensemble learning is to construct a pool of base classifiers with accuracy and diversity. In this paper, unlike conventional data-streams oriented ensemble methods, we propose a novel Measure via both Accuracy and Diversity (MAD) instead of one of them to supervise ensemble learning. Based on MAD, a novel online ensemble method called Accuracy and Diversity weighted Ensemble (ADE) effectively handles concept drift in data streams. ADE mainly uses the following three steps to construct a concept-drift oriented ensemble: for the current data window, 1) a new base classifier is constructed based on the current concept when drift detect, 2) MAD is used to measure the performance of ensemble members, and 3) a newly built classifier replaces the worst base classifier. If the newly constructed classifier is the worst one, the replacement has not occurred. Comparing with the state-of-art algorithms, ADE exceeds the current best-related algorithm by 2.38% in average classification accuracy. Experimental results show that the proposed method can effectively adapt to different types of drifts.\",\"PeriodicalId\":13624,\"journal\":{\"name\":\"Int. Arab J. Inf. Technol.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. Arab J. Inf. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34028/iajit/19/1/11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/19/1/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

集成分类是一种被积极研究的范式,由于越来越多的实际应用而受到广泛关注。集成学习的关键问题是构建一个具有准确性和多样性的基本分类器池。在本文中,与传统的面向数据流的集成方法不同,我们提出了一种新的基于准确性和多样性(MAD)的方法来监督集成学习。在此基础上,提出了一种新的在线集成方法——准确性和多样性加权集成(ADE),可以有效地处理数据流中的概念漂移。ADE主要通过以下三个步骤构建面向概念漂移的集成:对于当前数据窗口,1)漂移检测时基于当前概念构建新的基分类器,2)使用MAD度量集成成员的性能,3)新构建的分类器替换最差的基分类器。如果新构造的分类器是最差的分类器,则没有发生替换。与目前最先进的算法相比,ADE的平均分类准确率比目前最佳相关算法高出2.38%。实验结果表明,该方法能有效适应不同类型的漂移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble based on accuracy and diversity weighting for evolving data streams
Ensemble classification is an actively researched paradigm that has received much attention due to increasing real-world applications. The crucial issue of ensemble learning is to construct a pool of base classifiers with accuracy and diversity. In this paper, unlike conventional data-streams oriented ensemble methods, we propose a novel Measure via both Accuracy and Diversity (MAD) instead of one of them to supervise ensemble learning. Based on MAD, a novel online ensemble method called Accuracy and Diversity weighted Ensemble (ADE) effectively handles concept drift in data streams. ADE mainly uses the following three steps to construct a concept-drift oriented ensemble: for the current data window, 1) a new base classifier is constructed based on the current concept when drift detect, 2) MAD is used to measure the performance of ensemble members, and 3) a newly built classifier replaces the worst base classifier. If the newly constructed classifier is the worst one, the replacement has not occurred. Comparing with the state-of-art algorithms, ADE exceeds the current best-related algorithm by 2.38% in average classification accuracy. Experimental results show that the proposed method can effectively adapt to different types of drifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信