{"title":"罗勒基酱料的欧姆加热:电场强度对其导电性的影响","authors":"Oriana Casaburi, C. Brondi, Aldo Romano, F. Marra","doi":"10.3303/CET2187058","DOIUrl":null,"url":null,"abstract":"The Moderate Electric Field (MEF) processing of foods consists in the application of an electric potential gradient (????/??) ranging from 1 to 1000 V/cm on a food item (homogeneous or heterogeneous) placed between two electrodes, its main effect being the food heating due to the dissipation of a part of the electric energy into heat within the food item. The heating performances of such a system depend on several process and system parameters, including the applied ????/??, the food electrical conductivity, and its thermo-physical properties. In this study, the effects due to the salt composition and to the applied ????/?? to a heterogeneous food (constituted by a basil-based sauce, mainly fibers dispersed in a slightly salted water-oil emulsion) treated in a custom MEF system on the food heating rate are investigated. The samples were prepared at different salinities (3.25, 1.63, 0.86 and 0.43% w/w respectively). In the explored range of compositions, the heating rate increased linearly with the square power of applied ????/??. A slight linearity deviation above 55°C was observed for the basil-based sauce at 1.63% and 5.20 V/cm, associated with bubble formation within the ohmic system and the electrolytic reactions occurring at the electrode-solution interface during the MEF heating process.The salt content as well as the ratio between water and oil in the sample formulation played a crucial role in determining the thermo-electrical behavior of the basil-based sauce samples. Samples with salinity of 1.63%, compared to samples at 3.25%, exhibited a higher electrical conductivity, being due to a minor concentration of the non-conductive phase (namely the oil phase as well as the dispersed vegetable fibers into the solution) that exerts a major degree of electrical insulation. As the salinity decreases from 1.63% to 0.43%, samples were characterized by lower electrical conductivities, being due to a reduced ionic mobility when the salt contained into the sample is drastically reduced.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"8 1","pages":"343-348"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ohmic Heating of Basil-based Sauces: Influence of the Electric Field Strength on the Electrical Conductivity\",\"authors\":\"Oriana Casaburi, C. Brondi, Aldo Romano, F. Marra\",\"doi\":\"10.3303/CET2187058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Moderate Electric Field (MEF) processing of foods consists in the application of an electric potential gradient (????/??) ranging from 1 to 1000 V/cm on a food item (homogeneous or heterogeneous) placed between two electrodes, its main effect being the food heating due to the dissipation of a part of the electric energy into heat within the food item. The heating performances of such a system depend on several process and system parameters, including the applied ????/??, the food electrical conductivity, and its thermo-physical properties. In this study, the effects due to the salt composition and to the applied ????/?? to a heterogeneous food (constituted by a basil-based sauce, mainly fibers dispersed in a slightly salted water-oil emulsion) treated in a custom MEF system on the food heating rate are investigated. The samples were prepared at different salinities (3.25, 1.63, 0.86 and 0.43% w/w respectively). In the explored range of compositions, the heating rate increased linearly with the square power of applied ????/??. A slight linearity deviation above 55°C was observed for the basil-based sauce at 1.63% and 5.20 V/cm, associated with bubble formation within the ohmic system and the electrolytic reactions occurring at the electrode-solution interface during the MEF heating process.The salt content as well as the ratio between water and oil in the sample formulation played a crucial role in determining the thermo-electrical behavior of the basil-based sauce samples. Samples with salinity of 1.63%, compared to samples at 3.25%, exhibited a higher electrical conductivity, being due to a minor concentration of the non-conductive phase (namely the oil phase as well as the dispersed vegetable fibers into the solution) that exerts a major degree of electrical insulation. As the salinity decreases from 1.63% to 0.43%, samples were characterized by lower electrical conductivities, being due to a reduced ionic mobility when the salt contained into the sample is drastically reduced.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"8 1\",\"pages\":\"343-348\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Ohmic Heating of Basil-based Sauces: Influence of the Electric Field Strength on the Electrical Conductivity
The Moderate Electric Field (MEF) processing of foods consists in the application of an electric potential gradient (????/??) ranging from 1 to 1000 V/cm on a food item (homogeneous or heterogeneous) placed between two electrodes, its main effect being the food heating due to the dissipation of a part of the electric energy into heat within the food item. The heating performances of such a system depend on several process and system parameters, including the applied ????/??, the food electrical conductivity, and its thermo-physical properties. In this study, the effects due to the salt composition and to the applied ????/?? to a heterogeneous food (constituted by a basil-based sauce, mainly fibers dispersed in a slightly salted water-oil emulsion) treated in a custom MEF system on the food heating rate are investigated. The samples were prepared at different salinities (3.25, 1.63, 0.86 and 0.43% w/w respectively). In the explored range of compositions, the heating rate increased linearly with the square power of applied ????/??. A slight linearity deviation above 55°C was observed for the basil-based sauce at 1.63% and 5.20 V/cm, associated with bubble formation within the ohmic system and the electrolytic reactions occurring at the electrode-solution interface during the MEF heating process.The salt content as well as the ratio between water and oil in the sample formulation played a crucial role in determining the thermo-electrical behavior of the basil-based sauce samples. Samples with salinity of 1.63%, compared to samples at 3.25%, exhibited a higher electrical conductivity, being due to a minor concentration of the non-conductive phase (namely the oil phase as well as the dispersed vegetable fibers into the solution) that exerts a major degree of electrical insulation. As the salinity decreases from 1.63% to 0.43%, samples were characterized by lower electrical conductivities, being due to a reduced ionic mobility when the salt contained into the sample is drastically reduced.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering