发电高透明农业光伏玻璃窗的现场性能监测

M. Vasiliev, Victor Rosenberg, Jamie Lyford, D. Goodfield
{"title":"发电高透明农业光伏玻璃窗的现场性能监测","authors":"M. Vasiliev, Victor Rosenberg, Jamie Lyford, D. Goodfield","doi":"10.3390/technologies11040095","DOIUrl":null,"url":null,"abstract":"Currently, there are strong and sustained growth trends observed in multi-disciplinary industrial technologies such as building-integrated photovoltaics and agrivoltaics, where renewable energy production is featured in building envelopes of varying degrees of transparency. Novel glass products can provide a combination of thermal energy savings and solar energy harvesting, enabled by either patterned-semiconductor thin-film energy converters on glass substrates, or by using luminescent concentrator-type approaches to achieve high transparency. Significant progress has been demonstrated recently in building integrated solar windows featuring visible light transmission of up to 70%, with electric power outputs of up to Pmax ~ 30–33 Wp/m2. Several slightly different designs were tested during 2021–2023 in a greenhouse installation at Murdoch University in Perth, Western Australia; their long-term energy harvesting performance differences were found to be on the scale of ~10% in wall-mounted locations. Solar greenhouse generated electricity at rates of up to 19 kWh/day, offsetting nearly 40% of energy costs. The objective of this paper is to report on the field performance of these PV windows in the context of agrivoltaics and to provide some detail of the performance differences measured in several solar window designs related to their glazing structure materials. Methods for the identification and quantification of long-term field performance differences and energy generation trends in solar windows of marginally different design types are reported. The paper also aims to outline the practical application potential of these transparent construction materials in built environments, focusing on the measured renewable energy figures and seasonal trends observed during the long-term study.","PeriodicalId":22341,"journal":{"name":"Technologies","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field Performance Monitoring of Energy-Generating High-Transparency Agrivoltaic Glass Windows\",\"authors\":\"M. Vasiliev, Victor Rosenberg, Jamie Lyford, D. Goodfield\",\"doi\":\"10.3390/technologies11040095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, there are strong and sustained growth trends observed in multi-disciplinary industrial technologies such as building-integrated photovoltaics and agrivoltaics, where renewable energy production is featured in building envelopes of varying degrees of transparency. Novel glass products can provide a combination of thermal energy savings and solar energy harvesting, enabled by either patterned-semiconductor thin-film energy converters on glass substrates, or by using luminescent concentrator-type approaches to achieve high transparency. Significant progress has been demonstrated recently in building integrated solar windows featuring visible light transmission of up to 70%, with electric power outputs of up to Pmax ~ 30–33 Wp/m2. Several slightly different designs were tested during 2021–2023 in a greenhouse installation at Murdoch University in Perth, Western Australia; their long-term energy harvesting performance differences were found to be on the scale of ~10% in wall-mounted locations. Solar greenhouse generated electricity at rates of up to 19 kWh/day, offsetting nearly 40% of energy costs. The objective of this paper is to report on the field performance of these PV windows in the context of agrivoltaics and to provide some detail of the performance differences measured in several solar window designs related to their glazing structure materials. Methods for the identification and quantification of long-term field performance differences and energy generation trends in solar windows of marginally different design types are reported. The paper also aims to outline the practical application potential of these transparent construction materials in built environments, focusing on the measured renewable energy figures and seasonal trends observed during the long-term study.\",\"PeriodicalId\":22341,\"journal\":{\"name\":\"Technologies\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/technologies11040095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11040095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,在建筑一体化光伏发电和农业光伏发电等多学科工业技术中观察到强劲和持续的增长趋势,其中可再生能源生产在不同程度透明度的建筑围护结构中具有特色。新型玻璃产品可以提供热能节约和太阳能收集的组合,通过在玻璃基板上的图案半导体薄膜能量转换器,或通过使用发光聚光器类型的方法来实现高透明度。最近在建造集成太阳能窗户方面取得了重大进展,该窗户的可见光透射率高达70%,电功率输出高达Pmax ~ 30-33 Wp/m2。2021年至2023年,在西澳大利亚珀斯默多克大学的温室装置中测试了几种略有不同的设计;在壁挂式位置,它们的长期能量收集性能差异约为10%。太阳能温室的发电量高达19千瓦时/天,抵消了近40%的能源成本。本文的目的是报告这些光伏窗在农业发电背景下的现场性能,并提供与玻璃结构材料相关的几种太阳能窗设计中测量的性能差异的一些细节。本文报道了不同设计类型的太阳能窗的长期现场性能差异和能量产生趋势的识别和量化方法。本文还旨在概述这些透明建筑材料在建筑环境中的实际应用潜力,重点关注在长期研究中观察到的可再生能源数据和季节性趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field Performance Monitoring of Energy-Generating High-Transparency Agrivoltaic Glass Windows
Currently, there are strong and sustained growth trends observed in multi-disciplinary industrial technologies such as building-integrated photovoltaics and agrivoltaics, where renewable energy production is featured in building envelopes of varying degrees of transparency. Novel glass products can provide a combination of thermal energy savings and solar energy harvesting, enabled by either patterned-semiconductor thin-film energy converters on glass substrates, or by using luminescent concentrator-type approaches to achieve high transparency. Significant progress has been demonstrated recently in building integrated solar windows featuring visible light transmission of up to 70%, with electric power outputs of up to Pmax ~ 30–33 Wp/m2. Several slightly different designs were tested during 2021–2023 in a greenhouse installation at Murdoch University in Perth, Western Australia; their long-term energy harvesting performance differences were found to be on the scale of ~10% in wall-mounted locations. Solar greenhouse generated electricity at rates of up to 19 kWh/day, offsetting nearly 40% of energy costs. The objective of this paper is to report on the field performance of these PV windows in the context of agrivoltaics and to provide some detail of the performance differences measured in several solar window designs related to their glazing structure materials. Methods for the identification and quantification of long-term field performance differences and energy generation trends in solar windows of marginally different design types are reported. The paper also aims to outline the practical application potential of these transparent construction materials in built environments, focusing on the measured renewable energy figures and seasonal trends observed during the long-term study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信