{"title":"裂缝-基质界面质量输运中的基质细化:在裂缝性油藏提高采收率中的应用","authors":"Sarah Abdullatif Alruwayi, O. Uzun, H. Kazemi","doi":"10.2118/208038-ms","DOIUrl":null,"url":null,"abstract":"\n In this paper, we will show that it is highly beneficial to model dual-porosity reservoirs using matrix refinement (similar to the multiple interacting continua, MINC, of Preuss, 1985) for water displacing oil. Two practical situations are considered. The first is the effect of matrix refinement on the unsteady-state pressure solution, and the second situation is modeling water-oil, Buckley-Leverett (BL) displacement in waterflooding a fracture-dominated flow domain.\n The usefulness of matrix refinement will be illustrated using a three-node refinement of individual matrix blocks. Furthermore, this model was modified to account for matrix block size variability within each grid cell (in other words, statistical distribution of matrix size within each grid cell) using a discrete matrix-block-size distribution function. The paper will include two mathematical models, one unsteady-state pressure solution of the pressure diffusivity equation for use in rate transient analysis, and a second model, the Buckley-Leverett model to track saturation changes both in the reservoir fractures and within individual matrix blocks. To illustrate the effect of matrix heterogeneity on modeling results, we used three matrix bock sizes within each computation grid and one level of grid refinement for the individual matrix blocks.\n A critical issue in dual-porosity modeling is that much of the fluid interactions occur at the fracture-matrix interface. Therefore, refining the matrix block helps capture a more accurate transport of the fluid in-and-out of the matrix blocks. Our numerical results indicate that the none-refined matrix models provide only a poor approximation to saturation distribution within individual matrices. In other words, the saturation distribution is numerically dispersed; that is, no matrix refinement causes unwarranted large numerical dispersion in saturation distribution. Furthermore, matrix block size-distribution is more representative of fractured reservoirs.","PeriodicalId":10967,"journal":{"name":"Day 1 Mon, November 15, 2021","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix Refinement in Mass Transport Across Fracture-Matrix Interface: Application to Improved Oil Recovery in Fractured Reservoirs\",\"authors\":\"Sarah Abdullatif Alruwayi, O. Uzun, H. Kazemi\",\"doi\":\"10.2118/208038-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we will show that it is highly beneficial to model dual-porosity reservoirs using matrix refinement (similar to the multiple interacting continua, MINC, of Preuss, 1985) for water displacing oil. Two practical situations are considered. The first is the effect of matrix refinement on the unsteady-state pressure solution, and the second situation is modeling water-oil, Buckley-Leverett (BL) displacement in waterflooding a fracture-dominated flow domain.\\n The usefulness of matrix refinement will be illustrated using a three-node refinement of individual matrix blocks. Furthermore, this model was modified to account for matrix block size variability within each grid cell (in other words, statistical distribution of matrix size within each grid cell) using a discrete matrix-block-size distribution function. The paper will include two mathematical models, one unsteady-state pressure solution of the pressure diffusivity equation for use in rate transient analysis, and a second model, the Buckley-Leverett model to track saturation changes both in the reservoir fractures and within individual matrix blocks. To illustrate the effect of matrix heterogeneity on modeling results, we used three matrix bock sizes within each computation grid and one level of grid refinement for the individual matrix blocks.\\n A critical issue in dual-porosity modeling is that much of the fluid interactions occur at the fracture-matrix interface. Therefore, refining the matrix block helps capture a more accurate transport of the fluid in-and-out of the matrix blocks. Our numerical results indicate that the none-refined matrix models provide only a poor approximation to saturation distribution within individual matrices. In other words, the saturation distribution is numerically dispersed; that is, no matrix refinement causes unwarranted large numerical dispersion in saturation distribution. Furthermore, matrix block size-distribution is more representative of fractured reservoirs.\",\"PeriodicalId\":10967,\"journal\":{\"name\":\"Day 1 Mon, November 15, 2021\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 15, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208038-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 15, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208038-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Matrix Refinement in Mass Transport Across Fracture-Matrix Interface: Application to Improved Oil Recovery in Fractured Reservoirs
In this paper, we will show that it is highly beneficial to model dual-porosity reservoirs using matrix refinement (similar to the multiple interacting continua, MINC, of Preuss, 1985) for water displacing oil. Two practical situations are considered. The first is the effect of matrix refinement on the unsteady-state pressure solution, and the second situation is modeling water-oil, Buckley-Leverett (BL) displacement in waterflooding a fracture-dominated flow domain.
The usefulness of matrix refinement will be illustrated using a three-node refinement of individual matrix blocks. Furthermore, this model was modified to account for matrix block size variability within each grid cell (in other words, statistical distribution of matrix size within each grid cell) using a discrete matrix-block-size distribution function. The paper will include two mathematical models, one unsteady-state pressure solution of the pressure diffusivity equation for use in rate transient analysis, and a second model, the Buckley-Leverett model to track saturation changes both in the reservoir fractures and within individual matrix blocks. To illustrate the effect of matrix heterogeneity on modeling results, we used three matrix bock sizes within each computation grid and one level of grid refinement for the individual matrix blocks.
A critical issue in dual-porosity modeling is that much of the fluid interactions occur at the fracture-matrix interface. Therefore, refining the matrix block helps capture a more accurate transport of the fluid in-and-out of the matrix blocks. Our numerical results indicate that the none-refined matrix models provide only a poor approximation to saturation distribution within individual matrices. In other words, the saturation distribution is numerically dispersed; that is, no matrix refinement causes unwarranted large numerical dispersion in saturation distribution. Furthermore, matrix block size-distribution is more representative of fractured reservoirs.