{"title":"循环经济框架下新型生物基材料的红藻巨型胶状体(胶状体)","authors":"T. Mouga, Isabel Fernandes","doi":"10.3390/earth3030045","DOIUrl":null,"url":null,"abstract":"Gelidium corneum (Giant Gelidium or Atlantic agar) is a well-known red seaweed harvested for its high-quality agar content. Agar is a mixture of the polysaccharides used in the food industry as a gelling, thickener, clarifying, and stabilizer agent. The best agar quality is also used in the laboratory as bacteriological agar. Yet, in recent years, the species has been studied for many other applications. Examples of uses are pharmaceuticals, cosmetics, food supplements, bioremediation, biofuels, biofertilizers and biostimulants, biomaterials, and nanocrystals, among others. The use of this biomass, though, raises concerns about the sustainability of the resource, since this is not a cultivated species, being harvested in the wild. Thus, other uses of G. corneum biomass increase pressure on wild stocks already stressed due to climate change. However, in a biorefinery approach, a new trend is emerging, using waste biomass rather than harvested biomass to produce new bio-based materials. These are smart solutions that transform waste into innovative products, useful for various sectors of society while reducing the impact of biomass exploitation. The aim of this review paper, thus, is to address the current state of G. corneum biology, ecology, threats, its current uses and market, and the ongoing research on innovative proposals in a circular economy framework.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Red Seaweed Giant Gelidium (Gelidium corneum) for New Bio-Based Materials in a Circular Economy Framework\",\"authors\":\"T. Mouga, Isabel Fernandes\",\"doi\":\"10.3390/earth3030045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gelidium corneum (Giant Gelidium or Atlantic agar) is a well-known red seaweed harvested for its high-quality agar content. Agar is a mixture of the polysaccharides used in the food industry as a gelling, thickener, clarifying, and stabilizer agent. The best agar quality is also used in the laboratory as bacteriological agar. Yet, in recent years, the species has been studied for many other applications. Examples of uses are pharmaceuticals, cosmetics, food supplements, bioremediation, biofuels, biofertilizers and biostimulants, biomaterials, and nanocrystals, among others. The use of this biomass, though, raises concerns about the sustainability of the resource, since this is not a cultivated species, being harvested in the wild. Thus, other uses of G. corneum biomass increase pressure on wild stocks already stressed due to climate change. However, in a biorefinery approach, a new trend is emerging, using waste biomass rather than harvested biomass to produce new bio-based materials. These are smart solutions that transform waste into innovative products, useful for various sectors of society while reducing the impact of biomass exploitation. The aim of this review paper, thus, is to address the current state of G. corneum biology, ecology, threats, its current uses and market, and the ongoing research on innovative proposals in a circular economy framework.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/earth3030045\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/earth3030045","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The Red Seaweed Giant Gelidium (Gelidium corneum) for New Bio-Based Materials in a Circular Economy Framework
Gelidium corneum (Giant Gelidium or Atlantic agar) is a well-known red seaweed harvested for its high-quality agar content. Agar is a mixture of the polysaccharides used in the food industry as a gelling, thickener, clarifying, and stabilizer agent. The best agar quality is also used in the laboratory as bacteriological agar. Yet, in recent years, the species has been studied for many other applications. Examples of uses are pharmaceuticals, cosmetics, food supplements, bioremediation, biofuels, biofertilizers and biostimulants, biomaterials, and nanocrystals, among others. The use of this biomass, though, raises concerns about the sustainability of the resource, since this is not a cultivated species, being harvested in the wild. Thus, other uses of G. corneum biomass increase pressure on wild stocks already stressed due to climate change. However, in a biorefinery approach, a new trend is emerging, using waste biomass rather than harvested biomass to produce new bio-based materials. These are smart solutions that transform waste into innovative products, useful for various sectors of society while reducing the impact of biomass exploitation. The aim of this review paper, thus, is to address the current state of G. corneum biology, ecology, threats, its current uses and market, and the ongoing research on innovative proposals in a circular economy framework.
期刊介绍:
Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.