{"title":"不同类型纳米颗粒在机油基纳米流体中的吸附及热分析实验研究","authors":"Jasim AL-ENEZY, R. Yapici, A. Hameed","doi":"10.36306/konjes.1164260","DOIUrl":null,"url":null,"abstract":"Nanofluids are fluid suspensions of nanoparticles that exhibit notable properties enhancement even at low nanoparticle concentrations. This work compares the measured and calculated thermophysical parameters of nanofluidic motor oil. Thermophysical parameters of motor oils include thermal conductivity, viscosity, and Absorbance. The nanofluidic engine oil was prepared by dispersing multi-walled carbon nanotube (MWCNTs) and copper oxide (CuO) at different particle concentrations (0.03-0.12) %. The oil characteristics were measured at wide range of temperature. The viscosity data were found to be comparable to the numbers reported in literature. We found that the thermal conductivity increased up to five times with minor variance in some cases. The variation in thermal conductivity can be related to several reasons such as oil specifications and nanofluid preparation conditions. The measured Absorbance of the nanofluid is comparable to literature and has direct proportion relation with the volume fraction of nanoparticles.","PeriodicalId":17899,"journal":{"name":"Konya Journal of Engineering Sciences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXPERIMENTAL INVESTIGATION OF ABSORPTION AND THERMAL ANALYSIS OF DIFFERENT TYPES OF NANOPARTICLES WITH MOTOR OIL BASED NANOFLUIDS\",\"authors\":\"Jasim AL-ENEZY, R. Yapici, A. Hameed\",\"doi\":\"10.36306/konjes.1164260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofluids are fluid suspensions of nanoparticles that exhibit notable properties enhancement even at low nanoparticle concentrations. This work compares the measured and calculated thermophysical parameters of nanofluidic motor oil. Thermophysical parameters of motor oils include thermal conductivity, viscosity, and Absorbance. The nanofluidic engine oil was prepared by dispersing multi-walled carbon nanotube (MWCNTs) and copper oxide (CuO) at different particle concentrations (0.03-0.12) %. The oil characteristics were measured at wide range of temperature. The viscosity data were found to be comparable to the numbers reported in literature. We found that the thermal conductivity increased up to five times with minor variance in some cases. The variation in thermal conductivity can be related to several reasons such as oil specifications and nanofluid preparation conditions. The measured Absorbance of the nanofluid is comparable to literature and has direct proportion relation with the volume fraction of nanoparticles.\",\"PeriodicalId\":17899,\"journal\":{\"name\":\"Konya Journal of Engineering Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Konya Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36306/konjes.1164260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Konya Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36306/konjes.1164260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXPERIMENTAL INVESTIGATION OF ABSORPTION AND THERMAL ANALYSIS OF DIFFERENT TYPES OF NANOPARTICLES WITH MOTOR OIL BASED NANOFLUIDS
Nanofluids are fluid suspensions of nanoparticles that exhibit notable properties enhancement even at low nanoparticle concentrations. This work compares the measured and calculated thermophysical parameters of nanofluidic motor oil. Thermophysical parameters of motor oils include thermal conductivity, viscosity, and Absorbance. The nanofluidic engine oil was prepared by dispersing multi-walled carbon nanotube (MWCNTs) and copper oxide (CuO) at different particle concentrations (0.03-0.12) %. The oil characteristics were measured at wide range of temperature. The viscosity data were found to be comparable to the numbers reported in literature. We found that the thermal conductivity increased up to five times with minor variance in some cases. The variation in thermal conductivity can be related to several reasons such as oil specifications and nanofluid preparation conditions. The measured Absorbance of the nanofluid is comparable to literature and has direct proportion relation with the volume fraction of nanoparticles.