考虑初始板料渐变特性的板料成形过程控制的改进

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
B. Zettl, H. Schmid, S. Pulvermacher, Alexander Dyck, T. Böhlke, J. Gibmeier, M. Merklein
{"title":"考虑初始板料渐变特性的板料成形过程控制的改进","authors":"B. Zettl, H. Schmid, S. Pulvermacher, Alexander Dyck, T. Böhlke, J. Gibmeier, M. Merklein","doi":"10.1177/03093247231166035","DOIUrl":null,"url":null,"abstract":"In scientific studies, sheet metal is usually considered as a two-dimensional body. Thus, it is accepted that material properties are in most cases regarded homogeneous in thickness direction. However, a gradation of certain properties becomes apparent when going beyond the standard characterization methods for sheet metals, which can for example, influence the springback behavior and the thinning of the sheet after forming. Thus, the aim of this work is to further improve the prediction accuracy of springback after forming in simulations, by implementing several inhomogeneous properties over the sheet thickness in an existing material model. For this purpose, the entire procedure from the identification of the inhomogeneous properties for describing the gradation to the implementation in a numerical model and its validation by comparing experimental and simulated bending operations is carried out on a DC04 cold-forming steel in order to prove its influence on the springback behavior. It is shown that including graded material properties in simulations does indeed have an impact on the prediction quality of springback and that the information about inhomogeneous properties can be provided by existing characterization methods with a high local resolution like electron backscatter diffraction or X-ray stress analysis. In a further step, it was possible to validate the improvement in numerical accuracy by comparing the prediction of the springback angle from both the existing and the extended model with experimental bending results. Both the initial model as well as the model supplemented with the 3D properties provide a good prediction accuracy in the solution heat treated material state. For the predeformed material, however, the initial numerical model predicts a springback angle of about 13°, which deviates remarkably from the experimentally obtained mean value of about 17°. The extended model delivers a significantly improved accuracy in springback prediction in relation to the initial prediction (deviation of 4°) with a minor deviation of only about 0.8°, which proves the importance of considering the gradation of material properties in thickness direction for an overall higher dimensional accuracy of sheet metal products.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of process control in sheet metal forming by considering the gradual properties of the initial sheet metal\",\"authors\":\"B. Zettl, H. Schmid, S. Pulvermacher, Alexander Dyck, T. Böhlke, J. Gibmeier, M. Merklein\",\"doi\":\"10.1177/03093247231166035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In scientific studies, sheet metal is usually considered as a two-dimensional body. Thus, it is accepted that material properties are in most cases regarded homogeneous in thickness direction. However, a gradation of certain properties becomes apparent when going beyond the standard characterization methods for sheet metals, which can for example, influence the springback behavior and the thinning of the sheet after forming. Thus, the aim of this work is to further improve the prediction accuracy of springback after forming in simulations, by implementing several inhomogeneous properties over the sheet thickness in an existing material model. For this purpose, the entire procedure from the identification of the inhomogeneous properties for describing the gradation to the implementation in a numerical model and its validation by comparing experimental and simulated bending operations is carried out on a DC04 cold-forming steel in order to prove its influence on the springback behavior. It is shown that including graded material properties in simulations does indeed have an impact on the prediction quality of springback and that the information about inhomogeneous properties can be provided by existing characterization methods with a high local resolution like electron backscatter diffraction or X-ray stress analysis. In a further step, it was possible to validate the improvement in numerical accuracy by comparing the prediction of the springback angle from both the existing and the extended model with experimental bending results. Both the initial model as well as the model supplemented with the 3D properties provide a good prediction accuracy in the solution heat treated material state. For the predeformed material, however, the initial numerical model predicts a springback angle of about 13°, which deviates remarkably from the experimentally obtained mean value of about 17°. The extended model delivers a significantly improved accuracy in springback prediction in relation to the initial prediction (deviation of 4°) with a minor deviation of only about 0.8°, which proves the importance of considering the gradation of material properties in thickness direction for an overall higher dimensional accuracy of sheet metal products.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247231166035\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231166035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在科学研究中,金属薄板通常被认为是一个二维物体。因此,在大多数情况下,材料性能在厚度方向上被认为是均匀的。然而,当超出金属板的标准表征方法时,某些性能的分级变得明显,例如,这可能会影响成形后的回弹行为和薄板的变薄。因此,本工作的目的是通过在现有材料模型中实现板材厚度上的几个不均匀特性,进一步提高模拟成形后回弹的预测精度。为此,为了证明其对回弹行为的影响,在DC04冷弯钢上进行了从识别描述级配的非均匀性到在数值模型中实现并通过对比实验和模拟弯曲操作来验证其正确性的整个过程。结果表明,在模拟中加入梯度材料性质确实会影响回弹的预测质量,并且现有的具有高局部分辨率的表征方法,如电子背散射衍射或x射线应力分析,可以提供有关非均匀性质的信息。在进一步的步骤中,通过将现有模型和扩展模型的回弹角预测与实验弯曲结果进行比较,可以验证数值精度的提高。在固溶热处理材料状态下,初始模型和补充三维特性的模型均具有较好的预测精度。然而,对于预变形材料,初始数值模型预测的回弹角约为13°,与实验得到的平均回弹角约为17°有明显偏差。与初始预测(偏差4°)相比,扩展模型的回弹预测精度得到了显著提高,偏差仅为0.8°左右,这证明了考虑材料性能在厚度方向上的梯度对于提高钣金产品整体尺寸精度的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of process control in sheet metal forming by considering the gradual properties of the initial sheet metal
In scientific studies, sheet metal is usually considered as a two-dimensional body. Thus, it is accepted that material properties are in most cases regarded homogeneous in thickness direction. However, a gradation of certain properties becomes apparent when going beyond the standard characterization methods for sheet metals, which can for example, influence the springback behavior and the thinning of the sheet after forming. Thus, the aim of this work is to further improve the prediction accuracy of springback after forming in simulations, by implementing several inhomogeneous properties over the sheet thickness in an existing material model. For this purpose, the entire procedure from the identification of the inhomogeneous properties for describing the gradation to the implementation in a numerical model and its validation by comparing experimental and simulated bending operations is carried out on a DC04 cold-forming steel in order to prove its influence on the springback behavior. It is shown that including graded material properties in simulations does indeed have an impact on the prediction quality of springback and that the information about inhomogeneous properties can be provided by existing characterization methods with a high local resolution like electron backscatter diffraction or X-ray stress analysis. In a further step, it was possible to validate the improvement in numerical accuracy by comparing the prediction of the springback angle from both the existing and the extended model with experimental bending results. Both the initial model as well as the model supplemented with the 3D properties provide a good prediction accuracy in the solution heat treated material state. For the predeformed material, however, the initial numerical model predicts a springback angle of about 13°, which deviates remarkably from the experimentally obtained mean value of about 17°. The extended model delivers a significantly improved accuracy in springback prediction in relation to the initial prediction (deviation of 4°) with a minor deviation of only about 0.8°, which proves the importance of considering the gradation of material properties in thickness direction for an overall higher dimensional accuracy of sheet metal products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信