{"title":"非均相LiNbO3/Si直接键合用于波长相关的中红外成像","authors":"Jikai Xu, Zhihao Ren, Xinmiao Liu, Cheng Xu, Chenxi Wang, Yanhong Tian, Chengkuo Lee","doi":"10.1109/Transducers50396.2021.9495511","DOIUrl":null,"url":null,"abstract":"Lithium niobate (LiNbO3) is one of the most important multifunctional materials, which possesses excellent electro-optic and piezoelectric properties, as well as high transmittance in the mid-infrared (mid-IR) wavelength range. In this work, we developed a wet sequential plasma activated method for the heterogeneous direct bonding of single-crystal LiNbO3 and Si with a nanometer-scale (∼6.4 nm) interface. Both surface and interface characterizations are used for the exploration of the bonding mechanism. For the first time, atomic structures of the LiNbO3/Si direct bonding interface have been disclosed. Leveraging this direct bonding method, we creatively integrate the metasurface into the LiNbO3-based nanofluidics for wavelength-dependent imaging. Because of the accurate nanogap control between the nanoantenna and metal reflector, the quadrupole resonance can be well excited. Therefore, the mid-IR imaging with ultrahigh contrast has been achieved in the wavelength of $2.68\\ \\mu \\mathrm{m},\\ 3.16\\ \\mu \\mathrm{m}$, and $3.61\\ \\mu\\mathrm{m}$. Moreover, since the hot spots are completely exposed in the nanochamber, which can be filled with various types of liquids. More images can be designed and presented based on the light-matter interaction and changes of refractive index. Therefore, this hybrid LiNbO3-based nanofluidics has great potential in the applications of switchable optical devices and information encryption.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"120 1","pages":"585-588"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous LiNbO3/Si Direct Bonding for Wavelength-Dependent Mid-Infrared Imaging\",\"authors\":\"Jikai Xu, Zhihao Ren, Xinmiao Liu, Cheng Xu, Chenxi Wang, Yanhong Tian, Chengkuo Lee\",\"doi\":\"10.1109/Transducers50396.2021.9495511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium niobate (LiNbO3) is one of the most important multifunctional materials, which possesses excellent electro-optic and piezoelectric properties, as well as high transmittance in the mid-infrared (mid-IR) wavelength range. In this work, we developed a wet sequential plasma activated method for the heterogeneous direct bonding of single-crystal LiNbO3 and Si with a nanometer-scale (∼6.4 nm) interface. Both surface and interface characterizations are used for the exploration of the bonding mechanism. For the first time, atomic structures of the LiNbO3/Si direct bonding interface have been disclosed. Leveraging this direct bonding method, we creatively integrate the metasurface into the LiNbO3-based nanofluidics for wavelength-dependent imaging. Because of the accurate nanogap control between the nanoantenna and metal reflector, the quadrupole resonance can be well excited. Therefore, the mid-IR imaging with ultrahigh contrast has been achieved in the wavelength of $2.68\\\\ \\\\mu \\\\mathrm{m},\\\\ 3.16\\\\ \\\\mu \\\\mathrm{m}$, and $3.61\\\\ \\\\mu\\\\mathrm{m}$. Moreover, since the hot spots are completely exposed in the nanochamber, which can be filled with various types of liquids. More images can be designed and presented based on the light-matter interaction and changes of refractive index. Therefore, this hybrid LiNbO3-based nanofluidics has great potential in the applications of switchable optical devices and information encryption.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"120 1\",\"pages\":\"585-588\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterogeneous LiNbO3/Si Direct Bonding for Wavelength-Dependent Mid-Infrared Imaging
Lithium niobate (LiNbO3) is one of the most important multifunctional materials, which possesses excellent electro-optic and piezoelectric properties, as well as high transmittance in the mid-infrared (mid-IR) wavelength range. In this work, we developed a wet sequential plasma activated method for the heterogeneous direct bonding of single-crystal LiNbO3 and Si with a nanometer-scale (∼6.4 nm) interface. Both surface and interface characterizations are used for the exploration of the bonding mechanism. For the first time, atomic structures of the LiNbO3/Si direct bonding interface have been disclosed. Leveraging this direct bonding method, we creatively integrate the metasurface into the LiNbO3-based nanofluidics for wavelength-dependent imaging. Because of the accurate nanogap control between the nanoantenna and metal reflector, the quadrupole resonance can be well excited. Therefore, the mid-IR imaging with ultrahigh contrast has been achieved in the wavelength of $2.68\ \mu \mathrm{m},\ 3.16\ \mu \mathrm{m}$, and $3.61\ \mu\mathrm{m}$. Moreover, since the hot spots are completely exposed in the nanochamber, which can be filled with various types of liquids. More images can be designed and presented based on the light-matter interaction and changes of refractive index. Therefore, this hybrid LiNbO3-based nanofluidics has great potential in the applications of switchable optical devices and information encryption.