一种适应模式环境变化的逻辑神经网络

Q4 Computer Science
G. Tambouratzis, T. Stonham
{"title":"一种适应模式环境变化的逻辑神经网络","authors":"G. Tambouratzis, T. Stonham","doi":"10.1109/ICPR.1992.201719","DOIUrl":null,"url":null,"abstract":"An online, unsupervised training algorithm is presented, which allows a logical neural network already trained to identify classes of objects to adapt to changes in the environment. This algorithm enables the system to operate continuously, without danger of overgeneralisation and displays useful noise-reduction properties. Results indicating its capabilities and characteristics in this adaptation task are described. The algorithm's self-organisation characteristics are also evaluated.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"7 1","pages":"46-49"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A logical neural network that adapts to changes in the pattern environment\",\"authors\":\"G. Tambouratzis, T. Stonham\",\"doi\":\"10.1109/ICPR.1992.201719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An online, unsupervised training algorithm is presented, which allows a logical neural network already trained to identify classes of objects to adapt to changes in the environment. This algorithm enables the system to operate continuously, without danger of overgeneralisation and displays useful noise-reduction properties. Results indicating its capabilities and characteristics in this adaptation task are described. The algorithm's self-organisation characteristics are also evaluated.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"7 1\",\"pages\":\"46-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种在线的无监督训练算法,该算法允许已训练的逻辑神经网络识别物体的类别,以适应环境的变化。该算法使系统能够连续运行,没有过度泛化的危险,并显示出有用的降噪特性。结果表明,它的能力和特点在这一适应任务。并对该算法的自组织特性进行了评价
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A logical neural network that adapts to changes in the pattern environment
An online, unsupervised training algorithm is presented, which allows a logical neural network already trained to identify classes of objects to adapt to changes in the environment. This algorithm enables the system to operate continuously, without danger of overgeneralisation and displays useful noise-reduction properties. Results indicating its capabilities and characteristics in this adaptation task are described. The algorithm's self-organisation characteristics are also evaluated.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信