使用ML工作流将推荐系统迁移到云端

Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, M. Nambiar
{"title":"使用ML工作流将推荐系统迁移到云端","authors":"Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, M. Nambiar","doi":"10.1145/3375555.3384423","DOIUrl":null,"url":null,"abstract":"Inference is the production stage of machine learning workflow in which a trained model is used to infer or predict with real world data. A recommendation system improves customer experience by displaying most relevant items based on historical behavior of a customer. Machine learning models built for recommendation systems are deployed either on-premise or migrated to a cloud for inference in real time or batch. A recommendation system should be cost effective while honoring service level agreements (SLAs). In this work we discuss on-premise implementation of our recommendation system called iPrescribe. We show a methodology to migrate on-premise implementation of recommendation system to a cloud using ML workflow. We also present our study on performance of recommendation system model when deployed on different types of virtual instances.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"2017 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Migrating a Recommendation System to Cloud Using ML Workflow\",\"authors\":\"Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, M. Nambiar\",\"doi\":\"10.1145/3375555.3384423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inference is the production stage of machine learning workflow in which a trained model is used to infer or predict with real world data. A recommendation system improves customer experience by displaying most relevant items based on historical behavior of a customer. Machine learning models built for recommendation systems are deployed either on-premise or migrated to a cloud for inference in real time or batch. A recommendation system should be cost effective while honoring service level agreements (SLAs). In this work we discuss on-premise implementation of our recommendation system called iPrescribe. We show a methodology to migrate on-premise implementation of recommendation system to a cloud using ML workflow. We also present our study on performance of recommendation system model when deployed on different types of virtual instances.\",\"PeriodicalId\":10596,\"journal\":{\"name\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"volume\":\"2017 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375555.3384423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375555.3384423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

推理是机器学习工作流程的生产阶段,在这个阶段中,训练好的模型被用来用真实世界的数据进行推断或预测。推荐系统通过根据客户的历史行为显示最相关的项目来改善客户体验。为推荐系统构建的机器学习模型要么部署在本地,要么迁移到云端进行实时或批量推理。在遵守服务水平协议(sla)的同时,推荐系统应该具有成本效益。在这项工作中,我们讨论了我们的推荐系统iprescription的内部实现。我们展示了一种使用ML工作流将推荐系统的本地实现迁移到云的方法。我们还研究了推荐系统模型在不同类型的虚拟实例上部署时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Migrating a Recommendation System to Cloud Using ML Workflow
Inference is the production stage of machine learning workflow in which a trained model is used to infer or predict with real world data. A recommendation system improves customer experience by displaying most relevant items based on historical behavior of a customer. Machine learning models built for recommendation systems are deployed either on-premise or migrated to a cloud for inference in real time or batch. A recommendation system should be cost effective while honoring service level agreements (SLAs). In this work we discuss on-premise implementation of our recommendation system called iPrescribe. We show a methodology to migrate on-premise implementation of recommendation system to a cloud using ML workflow. We also present our study on performance of recommendation system model when deployed on different types of virtual instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信