利用GARCH模型建模和预测股票日收益波动率:来自达卡证券交易所的证据

Md. Tuhin Ahmed, N. Naher
{"title":"利用GARCH模型建模和预测股票日收益波动率:来自达卡证券交易所的证据","authors":"Md. Tuhin Ahmed, N. Naher","doi":"10.31014/AIOR.1992.04.03.371","DOIUrl":null,"url":null,"abstract":"Modelling volatility has become increasingly important in recent times for its diverse implications. The main purpose of this paper is to examine the performance of volatility modelling using different models and their forecasting accuracy for the returns of Dhaka Stock Exchange (DSE) under different error distribution assumptions. Using the daily closing price of DSE from the period 27 January 2013 to 06 November 2017, this analysis has been done using Generalized Autoregressive Conditional Heteroscedastic (GARCH), Asymmetric Power Autoregressive Conditional Heteroscedastic (APARCH), Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH), Threshold Generalized Autoregressive Conditional Heteroscedastic (TGARCH) and Integrated Generalized Autoregressive Conditional Heteroscedastic (IGARCH) models under both normal and student’s t error distribution. The study finds that ARMA (1,1)- TGARCH (1,1) is the most appropriate model for in-sample estimation accuracy under student’s t error distribution. The asymmetric effect captured by the parameter of ARMA (1,1) with TGARCH (1,1), APARCH (1,1) and EGARCH (1,1) models shows that negative shocks or bad news create more volatility than positive shocks or good news. The study also provides evidence that student’s t distribution for errors improves forecasting accuracy. With such an error distribution assumption, ARMA (1,1)-IGARCH (1,1) is considered the best for out-of-sample volatility forecasting.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling & Forecasting Volatility of Daily Stock Returns Using GARCH Models: Evidence from Dhaka Stock Exchange\",\"authors\":\"Md. Tuhin Ahmed, N. Naher\",\"doi\":\"10.31014/AIOR.1992.04.03.371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling volatility has become increasingly important in recent times for its diverse implications. The main purpose of this paper is to examine the performance of volatility modelling using different models and their forecasting accuracy for the returns of Dhaka Stock Exchange (DSE) under different error distribution assumptions. Using the daily closing price of DSE from the period 27 January 2013 to 06 November 2017, this analysis has been done using Generalized Autoregressive Conditional Heteroscedastic (GARCH), Asymmetric Power Autoregressive Conditional Heteroscedastic (APARCH), Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH), Threshold Generalized Autoregressive Conditional Heteroscedastic (TGARCH) and Integrated Generalized Autoregressive Conditional Heteroscedastic (IGARCH) models under both normal and student’s t error distribution. The study finds that ARMA (1,1)- TGARCH (1,1) is the most appropriate model for in-sample estimation accuracy under student’s t error distribution. The asymmetric effect captured by the parameter of ARMA (1,1) with TGARCH (1,1), APARCH (1,1) and EGARCH (1,1) models shows that negative shocks or bad news create more volatility than positive shocks or good news. The study also provides evidence that student’s t distribution for errors improves forecasting accuracy. With such an error distribution assumption, ARMA (1,1)-IGARCH (1,1) is considered the best for out-of-sample volatility forecasting.\",\"PeriodicalId\":11495,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Forecasting eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31014/AIOR.1992.04.03.371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31014/AIOR.1992.04.03.371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于波动性模型的多种含义,它在最近变得越来越重要。本文的主要目的是检验不同模型的波动率建模性能及其在不同误差分布假设下对达卡证券交易所(DSE)收益的预测精度。利用2013年1月27日至2017年11月6日的每日收盘价,采用广义自回归条件异方差(GARCH)、非对称幂自回归条件异方差(APARCH)、指数广义自回归条件异方差(EGARCH)、正态分布和学生t误差分布下的阈值广义自回归条件异方差(TGARCH)和积分广义自回归条件异方差(IGARCH)模型。研究发现,在学生t误差分布下,ARMA (1,1)- TGARCH(1,1)是样本内估计精度最合适的模型。ARMA(1,1)与TGARCH(1,1)、APARCH(1,1)和EGARCH(1,1)模型的参数捕获的不对称效应表明,负面冲击或坏消息比正面冲击或好消息产生更大的波动性。该研究还提供了证据,证明学生对误差的t分布提高了预测的准确性。在这样的误差分布假设下,ARMA (1,1)-IGARCH(1,1)被认为是样本外波动率预测的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling & Forecasting Volatility of Daily Stock Returns Using GARCH Models: Evidence from Dhaka Stock Exchange
Modelling volatility has become increasingly important in recent times for its diverse implications. The main purpose of this paper is to examine the performance of volatility modelling using different models and their forecasting accuracy for the returns of Dhaka Stock Exchange (DSE) under different error distribution assumptions. Using the daily closing price of DSE from the period 27 January 2013 to 06 November 2017, this analysis has been done using Generalized Autoregressive Conditional Heteroscedastic (GARCH), Asymmetric Power Autoregressive Conditional Heteroscedastic (APARCH), Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH), Threshold Generalized Autoregressive Conditional Heteroscedastic (TGARCH) and Integrated Generalized Autoregressive Conditional Heteroscedastic (IGARCH) models under both normal and student’s t error distribution. The study finds that ARMA (1,1)- TGARCH (1,1) is the most appropriate model for in-sample estimation accuracy under student’s t error distribution. The asymmetric effect captured by the parameter of ARMA (1,1) with TGARCH (1,1), APARCH (1,1) and EGARCH (1,1) models shows that negative shocks or bad news create more volatility than positive shocks or good news. The study also provides evidence that student’s t distribution for errors improves forecasting accuracy. With such an error distribution assumption, ARMA (1,1)-IGARCH (1,1) is considered the best for out-of-sample volatility forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信