带调质ψ-Caputo分数阶导数的微分方程

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Medved', Eva Brestovanská
{"title":"带调质ψ-Caputo分数阶导数的微分方程","authors":"M. Medved', Eva Brestovanská","doi":"10.3846/mma.2021.13252","DOIUrl":null,"url":null,"abstract":"In this paper we define a new type of the fractional derivative, which we call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy problem for fractional differential equations with this type of derivative is discussed and some existence and uniqueness results are proved. We present a Henry-Gronwall type inequality for an integral inequality with the tempered Ψ−fractional integral. This inequality is applied in the proof of an existence theorem. A result on a representation of solutions of linear systems of Ψ−Caputo fractional differential equations is proved and in the last section an example is presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Differential equations with tempered ψ-Caputo fractional derivative\",\"authors\":\"M. Medved', Eva Brestovanská\",\"doi\":\"10.3846/mma.2021.13252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define a new type of the fractional derivative, which we call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy problem for fractional differential equations with this type of derivative is discussed and some existence and uniqueness results are proved. We present a Henry-Gronwall type inequality for an integral inequality with the tempered Ψ−fractional integral. This inequality is applied in the proof of an existence theorem. A result on a representation of solutions of linear systems of Ψ−Caputo fractional differential equations is proved and in the last section an example is presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2021.13252\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2021.13252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

本文定义了一类新的分数阶导数,我们称之为回火Ψ - Caputo分数阶导数。它是回火卡普托分数阶导数和Ψ -卡普托分数阶导数的推广。讨论了具有这类导数的分数阶微分方程的柯西问题,并证明了其存在唯一性。对于一个缓变Ψ -分数积分的积分不等式,我们给出了一个Henry-Gronwall型不等式。这个不等式用于证明一个存在性定理。本文证明了Ψ−Caputo分数阶微分方程线性系统解的一个表示的结果,并在最后一节给出了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential equations with tempered ψ-Caputo fractional derivative
In this paper we define a new type of the fractional derivative, which we call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy problem for fractional differential equations with this type of derivative is discussed and some existence and uniqueness results are proved. We present a Henry-Gronwall type inequality for an integral inequality with the tempered Ψ−fractional integral. This inequality is applied in the proof of an existence theorem. A result on a representation of solutions of linear systems of Ψ−Caputo fractional differential equations is proved and in the last section an example is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信