带调质ψ-Caputo分数阶导数的微分方程

IF 1.6 3区 数学 Q1 MATHEMATICS
M. Medved', Eva Brestovanská
{"title":"带调质ψ-Caputo分数阶导数的微分方程","authors":"M. Medved', Eva Brestovanská","doi":"10.3846/mma.2021.13252","DOIUrl":null,"url":null,"abstract":"In this paper we define a new type of the fractional derivative, which we call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy problem for fractional differential equations with this type of derivative is discussed and some existence and uniqueness results are proved. We present a Henry-Gronwall type inequality for an integral inequality with the tempered Ψ−fractional integral. This inequality is applied in the proof of an existence theorem. A result on a representation of solutions of linear systems of Ψ−Caputo fractional differential equations is proved and in the last section an example is presented.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"2 1","pages":"631-650"},"PeriodicalIF":1.6000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Differential equations with tempered ψ-Caputo fractional derivative\",\"authors\":\"M. Medved', Eva Brestovanská\",\"doi\":\"10.3846/mma.2021.13252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we define a new type of the fractional derivative, which we call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy problem for fractional differential equations with this type of derivative is discussed and some existence and uniqueness results are proved. We present a Henry-Gronwall type inequality for an integral inequality with the tempered Ψ−fractional integral. This inequality is applied in the proof of an existence theorem. A result on a representation of solutions of linear systems of Ψ−Caputo fractional differential equations is proved and in the last section an example is presented.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"2 1\",\"pages\":\"631-650\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2021.13252\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2021.13252","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

本文定义了一类新的分数阶导数,我们称之为回火Ψ - Caputo分数阶导数。它是回火卡普托分数阶导数和Ψ -卡普托分数阶导数的推广。讨论了具有这类导数的分数阶微分方程的柯西问题,并证明了其存在唯一性。对于一个缓变Ψ -分数积分的积分不等式,我们给出了一个Henry-Gronwall型不等式。这个不等式用于证明一个存在性定理。本文证明了Ψ−Caputo分数阶微分方程线性系统解的一个表示的结果,并在最后一节给出了一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential equations with tempered ψ-Caputo fractional derivative
In this paper we define a new type of the fractional derivative, which we call tempered Ψ−Caputo fractional derivative. It is a generalization of the tempered Caputo fractional derivative and of the Ψ−Caputo fractional derivative. The Cauchy problem for fractional differential equations with this type of derivative is discussed and some existence and uniqueness results are proved. We present a Henry-Gronwall type inequality for an integral inequality with the tempered Ψ−fractional integral. This inequality is applied in the proof of an existence theorem. A result on a representation of solutions of linear systems of Ψ−Caputo fractional differential equations is proved and in the last section an example is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信