过程控制中正态样本中值分布的逼近

Q3 Mathematics
Char Leung
{"title":"过程控制中正态样本中值分布的逼近","authors":"Char Leung","doi":"10.1515/eqc-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract The present work aims to propose an approximation of the sample median distribution with a normal parent distribution. Although the mean is usually used as the central tendency measure for normal samples, the median has also been used in engineering, process control in particular. The proposed method approximates the normal sample median distribution only using the normal distribution function. It outperforms Castagliola’s method for small samples and serves as an alternative approximation for trading off accuracy against computational complexity for large samples.","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"10 1","pages":"21 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating the Normal Sample Median Distribution in Process Control\",\"authors\":\"Char Leung\",\"doi\":\"10.1515/eqc-2021-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The present work aims to propose an approximation of the sample median distribution with a normal parent distribution. Although the mean is usually used as the central tendency measure for normal samples, the median has also been used in engineering, process control in particular. The proposed method approximates the normal sample median distribution only using the normal distribution function. It outperforms Castagliola’s method for small samples and serves as an alternative approximation for trading off accuracy against computational complexity for large samples.\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"10 1\",\"pages\":\"21 - 25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2021-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是提出一种用正态母分布近似样本中位数分布的方法。虽然平均值通常被用作正态样本的集中趋势度量,但中位数也被用于工程,特别是过程控制。该方法仅利用正态分布函数逼近正态样本中位数分布。对于小样本,它优于Castagliola的方法,并且可以作为一种替代的近似方法来权衡大样本的准确性和计算复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating the Normal Sample Median Distribution in Process Control
Abstract The present work aims to propose an approximation of the sample median distribution with a normal parent distribution. Although the mean is usually used as the central tendency measure for normal samples, the median has also been used in engineering, process control in particular. The proposed method approximates the normal sample median distribution only using the normal distribution function. It outperforms Castagliola’s method for small samples and serves as an alternative approximation for trading off accuracy against computational complexity for large samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信