Imad El Bouchairi, J. Fadili, Abderrahim El Moataz
{"title":"[[EQUATION]]-图上的拉普拉斯进化问题的连续统极限:[[EQUATION]]图与稀疏图","authors":"Imad El Bouchairi, J. Fadili, Abderrahim El Moataz","doi":"10.1051/m2an/2023006","DOIUrl":null,"url":null,"abstract":"In this paper we study continuum limits of the discretized [[EQUATION]] -Laplacian evolution problem on sparse graphs with homogeneous Neumann boundary conditions. This goes far beyond known results by handling much more general class of kernels, possibly singular, and graph sequences whose limit are the so-called [[EQUATION]] -graphons. More precisely, we derive a bound on the distance between two continuous-in-time trajectories defined by two different evolution systems (i.e. with different kernels, second member and initial data). Similarly, we provide a bound in the case that one of the trajectories is discrete-in-time and the other is continuous. In turn, these results lead us to establish error estimates of the full discretization of the [[EQUATION]] -Laplacian problem on sparse random graphs. In particular, we provide rate of convergence of solutions for the discrete models to the solution of the continuous problem as the number of vertices grows.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuum limit of [[EQUATION]]-Laplacian evolution problems on graphs: [[EQUATION]]graphons and sparse graphs\",\"authors\":\"Imad El Bouchairi, J. Fadili, Abderrahim El Moataz\",\"doi\":\"10.1051/m2an/2023006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study continuum limits of the discretized [[EQUATION]] -Laplacian evolution problem on sparse graphs with homogeneous Neumann boundary conditions. This goes far beyond known results by handling much more general class of kernels, possibly singular, and graph sequences whose limit are the so-called [[EQUATION]] -graphons. More precisely, we derive a bound on the distance between two continuous-in-time trajectories defined by two different evolution systems (i.e. with different kernels, second member and initial data). Similarly, we provide a bound in the case that one of the trajectories is discrete-in-time and the other is continuous. In turn, these results lead us to establish error estimates of the full discretization of the [[EQUATION]] -Laplacian problem on sparse random graphs. In particular, we provide rate of convergence of solutions for the discrete models to the solution of the continuous problem as the number of vertices grows.\",\"PeriodicalId\":50499,\"journal\":{\"name\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2023006\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2023006","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Continuum limit of [[EQUATION]]-Laplacian evolution problems on graphs: [[EQUATION]]graphons and sparse graphs
In this paper we study continuum limits of the discretized [[EQUATION]] -Laplacian evolution problem on sparse graphs with homogeneous Neumann boundary conditions. This goes far beyond known results by handling much more general class of kernels, possibly singular, and graph sequences whose limit are the so-called [[EQUATION]] -graphons. More precisely, we derive a bound on the distance between two continuous-in-time trajectories defined by two different evolution systems (i.e. with different kernels, second member and initial data). Similarly, we provide a bound in the case that one of the trajectories is discrete-in-time and the other is continuous. In turn, these results lead us to establish error estimates of the full discretization of the [[EQUATION]] -Laplacian problem on sparse random graphs. In particular, we provide rate of convergence of solutions for the discrete models to the solution of the continuous problem as the number of vertices grows.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.