纳米成分改性对AlSi7Mg铝合金结晶过程及组织影响的研究

P. Kuzmanov, А. Velikov, R. Dimitrova, A. Cherepanov, Manolov
{"title":"纳米成分改性对AlSi7Mg铝合金结晶过程及组织影响的研究","authors":"P. Kuzmanov, А. Velikov, R. Dimitrova, A. Cherepanov, Manolov","doi":"10.4172/2324-8777.1000271","DOIUrl":null,"url":null,"abstract":"A study of the cast alloy A356, modified by various types of nanoparticles has been carried out. SiC, AlN, TiN, clad by Cu, Ag and Al have been used. The cladding has been done by the following methods: currentless chemical method, extrusion of a composite rod, tableting and mechanical-chemical treatment in a planetary mill. The obtained nanocompositions (NCs) have been introduced into the crucible of the furnace. Homogenization has been conducted after that by using an impeller. The samples have been cast in thin-walled steel containers. The non-stationary temperature has been measured during cooling and crystallization. Data about the dependencies of the temperature on time have been obtained and the magnitude of overcooling for the cases with and without NCs has been determined. It has been established for the samples with NCs, decreasing of the overcooling and grain refinement, with an average diameter of the α-grains decreasing from 21% to 60%. For the sample, modified by NC, SDAS (Secondary Dendrite Arms Spacing) decreases by about 14%, while the micro-hardness increases by 7.7%, compared to the unmodified sample. These studies reveal new information about the influence of the NCs on the process of crystallization of А356 alloy.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Influence of Modification by Nanocompositions both on the Process of Crystallization and on the Structure of Aluminum Alloy AlSi7Mg\",\"authors\":\"P. Kuzmanov, А. Velikov, R. Dimitrova, A. Cherepanov, Manolov\",\"doi\":\"10.4172/2324-8777.1000271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A study of the cast alloy A356, modified by various types of nanoparticles has been carried out. SiC, AlN, TiN, clad by Cu, Ag and Al have been used. The cladding has been done by the following methods: currentless chemical method, extrusion of a composite rod, tableting and mechanical-chemical treatment in a planetary mill. The obtained nanocompositions (NCs) have been introduced into the crucible of the furnace. Homogenization has been conducted after that by using an impeller. The samples have been cast in thin-walled steel containers. The non-stationary temperature has been measured during cooling and crystallization. Data about the dependencies of the temperature on time have been obtained and the magnitude of overcooling for the cases with and without NCs has been determined. It has been established for the samples with NCs, decreasing of the overcooling and grain refinement, with an average diameter of the α-grains decreasing from 21% to 60%. For the sample, modified by NC, SDAS (Secondary Dendrite Arms Spacing) decreases by about 14%, while the micro-hardness increases by 7.7%, compared to the unmodified sample. These studies reveal new information about the influence of the NCs on the process of crystallization of А356 alloy.\",\"PeriodicalId\":16457,\"journal\":{\"name\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials & Molecular Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2324-8777.1000271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.1000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对A356铸造合金进行了不同类型纳米颗粒改性的研究。用Cu、Ag、Al包覆SiC、AlN、TiN。采用无电流化学法、复合棒挤压法、压片法和行星磨机机械化学处理等方法进行了熔覆。得到的纳米合成物(NCs)已被引入熔炉的坩埚中。然后用叶轮进行均质。样品已浇铸在薄壁钢容器中。在冷却和结晶过程中测量了非稳态温度。获得了温度对时间的依赖性数据,并确定了有和没有nc的情况下的过冷程度。结果表明,含nc的样品过冷度和晶粒细化程度均有所降低,α-晶粒的平均直径由21%降低至60%。与未改性的样品相比,经NC改性的样品的SDAS(次生枝晶臂间距)降低了约14%,显微硬度提高了7.7%。这些研究揭示了纳米碳对А356合金结晶过程影响的新信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the Influence of Modification by Nanocompositions both on the Process of Crystallization and on the Structure of Aluminum Alloy AlSi7Mg
A study of the cast alloy A356, modified by various types of nanoparticles has been carried out. SiC, AlN, TiN, clad by Cu, Ag and Al have been used. The cladding has been done by the following methods: currentless chemical method, extrusion of a composite rod, tableting and mechanical-chemical treatment in a planetary mill. The obtained nanocompositions (NCs) have been introduced into the crucible of the furnace. Homogenization has been conducted after that by using an impeller. The samples have been cast in thin-walled steel containers. The non-stationary temperature has been measured during cooling and crystallization. Data about the dependencies of the temperature on time have been obtained and the magnitude of overcooling for the cases with and without NCs has been determined. It has been established for the samples with NCs, decreasing of the overcooling and grain refinement, with an average diameter of the α-grains decreasing from 21% to 60%. For the sample, modified by NC, SDAS (Secondary Dendrite Arms Spacing) decreases by about 14%, while the micro-hardness increases by 7.7%, compared to the unmodified sample. These studies reveal new information about the influence of the NCs on the process of crystallization of А356 alloy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信