机械化学分解的MAX相上的金属须生长

Qianqian Zhang, Zhihua Tian, Peigen Zhang, Shuai Li, Yan Zhang, Yushuang Liu, Long Pan, W. He, Zhengming Sun
{"title":"机械化学分解的MAX相上的金属须生长","authors":"Qianqian Zhang, Zhihua Tian, Peigen Zhang, Shuai Li, Yan Zhang, Yushuang Liu, Long Pan, W. He, Zhengming Sun","doi":"10.2139/ssrn.3920961","DOIUrl":null,"url":null,"abstract":"Metallic whiskers grown on MAX phases bring concerns on their stability, and draw intense attention because of the impressing similarity they share with the troublesome tin whiskers primarily found on Sn-based solders in electronics. Herein, we report the mushrooming of tin whiskers associated with Ti2SnC, a MAX phase, and the whisker growth propensity correlated with the decomposition degree of Ti2SnC. Tin atoms, exposed as Ti2SnC mechanochemically decomposes, have high chemical potential and therefore can fast crystallize by “short-circuit” diffusion. Fascinatingly, the similar phenomenon happens to several other MAX phases, and the composition of whiskers is adjustable, boding well a paradigm-shifting means for preparing metallic whiskers. The fundamental role of active tin atoms in whisker growth manifested here shall lay foundation for developing whisker-mitigating methods for MAX phases, and furthermore, help comprehensively understand the growth mechanism of the tin whiskers haunted electronic industry for many decades.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metallic Whiskers Mushrooming on Mechanochemically Decomposed MAX Phases\",\"authors\":\"Qianqian Zhang, Zhihua Tian, Peigen Zhang, Shuai Li, Yan Zhang, Yushuang Liu, Long Pan, W. He, Zhengming Sun\",\"doi\":\"10.2139/ssrn.3920961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallic whiskers grown on MAX phases bring concerns on their stability, and draw intense attention because of the impressing similarity they share with the troublesome tin whiskers primarily found on Sn-based solders in electronics. Herein, we report the mushrooming of tin whiskers associated with Ti2SnC, a MAX phase, and the whisker growth propensity correlated with the decomposition degree of Ti2SnC. Tin atoms, exposed as Ti2SnC mechanochemically decomposes, have high chemical potential and therefore can fast crystallize by “short-circuit” diffusion. Fascinatingly, the similar phenomenon happens to several other MAX phases, and the composition of whiskers is adjustable, boding well a paradigm-shifting means for preparing metallic whiskers. The fundamental role of active tin atoms in whisker growth manifested here shall lay foundation for developing whisker-mitigating methods for MAX phases, and furthermore, help comprehensively understand the growth mechanism of the tin whiskers haunted electronic industry for many decades.\",\"PeriodicalId\":10639,\"journal\":{\"name\":\"Computational Materials Science eJournal\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3920961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3920961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在MAX相上生长的金属晶须引起了人们对其稳定性的关注,并引起了人们的强烈关注,因为它们与主要在电子产品中锡基焊料上发现的麻烦的锡晶须有着令人印象深刻的相似性。在此,我们报道了与Ti2SnC (MAX相)相关的锡晶须的生长,以及与Ti2SnC分解程度相关的晶须生长倾向。暴露在Ti2SnC机械化学分解下的锡原子具有很高的化学势,因此可以通过“短路”扩散快速结晶。有趣的是,类似的现象也发生在其他几个MAX相中,而且晶须的组成是可调节的,这很好地预示着一种制备金属晶须的范式转换方法。本文所揭示的活性锡原子在晶须生长中的基础性作用,将为开发MAX相的晶须抑制方法奠定基础,并有助于全面理解困扰电子工业数十年的锡晶须生长机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metallic Whiskers Mushrooming on Mechanochemically Decomposed MAX Phases
Metallic whiskers grown on MAX phases bring concerns on their stability, and draw intense attention because of the impressing similarity they share with the troublesome tin whiskers primarily found on Sn-based solders in electronics. Herein, we report the mushrooming of tin whiskers associated with Ti2SnC, a MAX phase, and the whisker growth propensity correlated with the decomposition degree of Ti2SnC. Tin atoms, exposed as Ti2SnC mechanochemically decomposes, have high chemical potential and therefore can fast crystallize by “short-circuit” diffusion. Fascinatingly, the similar phenomenon happens to several other MAX phases, and the composition of whiskers is adjustable, boding well a paradigm-shifting means for preparing metallic whiskers. The fundamental role of active tin atoms in whisker growth manifested here shall lay foundation for developing whisker-mitigating methods for MAX phases, and furthermore, help comprehensively understand the growth mechanism of the tin whiskers haunted electronic industry for many decades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信