Venkatasupura Vemulapati, Y. Vijaykumar, N. Visali, K. Kumar
{"title":"基于模块化多电平变换器的印度高速铁路网先进牵引变电所","authors":"Venkatasupura Vemulapati, Y. Vijaykumar, N. Visali, K. Kumar","doi":"10.13052/dgaej2156-3306.38311","DOIUrl":null,"url":null,"abstract":"The current power transmission system for Indian railways facing difficulties with voltage unbalance, harmonics and circulation of negative sequence current throughout the power transmission line. In addition, the existence of neutral sections between two adjacent traction substations will cause the speed reduction and is considered as the main limitation for high speed. Traction load is a single phase in nature and it is very difficult to estimate the power flow from adjacent substations to locomotive as well as the location of the train. In this paper advanced common phase traction power transmission system is designed which is much appropriate for high speed railway (HSR) by eliminating neutral sections (NS) and overcome all the fore mentioned power quality (PQ) issues. A simplex algorithm is proposed to estimate the power flow and location of the train. The simulation results are analysed and low scale prototype model is built to validate the simulation outcomes. The results obtained are satisfactory and indicates the system suitability for high speed railway network.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular Multilevel Converter Based Advanced Traction Power Transmission Substation for High Speed Railway Network in India\",\"authors\":\"Venkatasupura Vemulapati, Y. Vijaykumar, N. Visali, K. Kumar\",\"doi\":\"10.13052/dgaej2156-3306.38311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current power transmission system for Indian railways facing difficulties with voltage unbalance, harmonics and circulation of negative sequence current throughout the power transmission line. In addition, the existence of neutral sections between two adjacent traction substations will cause the speed reduction and is considered as the main limitation for high speed. Traction load is a single phase in nature and it is very difficult to estimate the power flow from adjacent substations to locomotive as well as the location of the train. In this paper advanced common phase traction power transmission system is designed which is much appropriate for high speed railway (HSR) by eliminating neutral sections (NS) and overcome all the fore mentioned power quality (PQ) issues. A simplex algorithm is proposed to estimate the power flow and location of the train. The simulation results are analysed and low scale prototype model is built to validate the simulation outcomes. The results obtained are satisfactory and indicates the system suitability for high speed railway network.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.38311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.38311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modular Multilevel Converter Based Advanced Traction Power Transmission Substation for High Speed Railway Network in India
The current power transmission system for Indian railways facing difficulties with voltage unbalance, harmonics and circulation of negative sequence current throughout the power transmission line. In addition, the existence of neutral sections between two adjacent traction substations will cause the speed reduction and is considered as the main limitation for high speed. Traction load is a single phase in nature and it is very difficult to estimate the power flow from adjacent substations to locomotive as well as the location of the train. In this paper advanced common phase traction power transmission system is designed which is much appropriate for high speed railway (HSR) by eliminating neutral sections (NS) and overcome all the fore mentioned power quality (PQ) issues. A simplex algorithm is proposed to estimate the power flow and location of the train. The simulation results are analysed and low scale prototype model is built to validate the simulation outcomes. The results obtained are satisfactory and indicates the system suitability for high speed railway network.