S. Farahvash, W. Roberts, Jake Easter, R. Wei, D. Stegmeir, Li Jin
{"title":"用于基础设施应用的低噪声频率合成器","authors":"S. Farahvash, W. Roberts, Jake Easter, R. Wei, D. Stegmeir, Li Jin","doi":"10.1109/ISSCC.2010.5433944","DOIUrl":null,"url":null,"abstract":"Because of higher performance requirements, infrastructure transceivers have historically employed lower levels of on-chip integration than their handset counterparts. One of the main limiting components preventing on-chip integration is the Local Oscillator (LO). The phase noise performance of the LO and its switching speed are some of the most critical performance metrics for an infrastructure transceiver. The work presented here is a frequency synthesizer IC targeted at wireless infrastructure applications. Previous works on high-performance VCO design either did not address the large tuning bandwidth requirements [1] or lacked the required phase noise performance [2–3].","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"16 1","pages":"250-251"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A low-noise frequency synthesizer for infrastructure applications\",\"authors\":\"S. Farahvash, W. Roberts, Jake Easter, R. Wei, D. Stegmeir, Li Jin\",\"doi\":\"10.1109/ISSCC.2010.5433944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of higher performance requirements, infrastructure transceivers have historically employed lower levels of on-chip integration than their handset counterparts. One of the main limiting components preventing on-chip integration is the Local Oscillator (LO). The phase noise performance of the LO and its switching speed are some of the most critical performance metrics for an infrastructure transceiver. The work presented here is a frequency synthesizer IC targeted at wireless infrastructure applications. Previous works on high-performance VCO design either did not address the large tuning bandwidth requirements [1] or lacked the required phase noise performance [2–3].\",\"PeriodicalId\":6418,\"journal\":{\"name\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"volume\":\"16 1\",\"pages\":\"250-251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Solid-State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2010.5433944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-noise frequency synthesizer for infrastructure applications
Because of higher performance requirements, infrastructure transceivers have historically employed lower levels of on-chip integration than their handset counterparts. One of the main limiting components preventing on-chip integration is the Local Oscillator (LO). The phase noise performance of the LO and its switching speed are some of the most critical performance metrics for an infrastructure transceiver. The work presented here is a frequency synthesizer IC targeted at wireless infrastructure applications. Previous works on high-performance VCO design either did not address the large tuning bandwidth requirements [1] or lacked the required phase noise performance [2–3].