采用物理和机器学习混合方法的实时钻井液压仿真数字孪生

P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer
{"title":"采用物理和机器学习混合方法的实时钻井液压仿真数字孪生","authors":"P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer","doi":"10.4043/31278-ms","DOIUrl":null,"url":null,"abstract":"\n Abnormal hydraulic event detection is essential for offshore well construction operations. These operations require model comparisons and real-time measurements. For this task, physics-based models, which need frequent manual calibration do not accurately capture all the hydraulic trends. The paper presents a method to overcome existing limitations by combining physics-based models with machine learning techniques, which are suited for time series forecasting. This method ensures accurate and reliable predictions during the forecasting period and helps remove the need for frequent manual calibration of the hydraulic input parameters.","PeriodicalId":10936,"journal":{"name":"Day 2 Tue, August 17, 2021","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Digital Twin for Real-Time Drilling Hydraulics Simulation Using a Hybrid Approach of Physics and Machine Learning\",\"authors\":\"P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer\",\"doi\":\"10.4043/31278-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Abnormal hydraulic event detection is essential for offshore well construction operations. These operations require model comparisons and real-time measurements. For this task, physics-based models, which need frequent manual calibration do not accurately capture all the hydraulic trends. The paper presents a method to overcome existing limitations by combining physics-based models with machine learning techniques, which are suited for time series forecasting. This method ensures accurate and reliable predictions during the forecasting period and helps remove the need for frequent manual calibration of the hydraulic input parameters.\",\"PeriodicalId\":10936,\"journal\":{\"name\":\"Day 2 Tue, August 17, 2021\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31278-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31278-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

异常水力事件检测是海上油井建设作业的关键。这些操作需要模型比较和实时测量。对于这项任务,基于物理的模型需要频繁的手动校准,并不能准确地捕捉到所有的液压趋势。本文提出了一种将基于物理的模型与适合于时间序列预测的机器学习技术相结合的方法来克服现有的局限性。该方法确保了预测期间准确可靠的预测,并有助于消除频繁手动校准液压输入参数的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Digital Twin for Real-Time Drilling Hydraulics Simulation Using a Hybrid Approach of Physics and Machine Learning
Abnormal hydraulic event detection is essential for offshore well construction operations. These operations require model comparisons and real-time measurements. For this task, physics-based models, which need frequent manual calibration do not accurately capture all the hydraulic trends. The paper presents a method to overcome existing limitations by combining physics-based models with machine learning techniques, which are suited for time series forecasting. This method ensures accurate and reliable predictions during the forecasting period and helps remove the need for frequent manual calibration of the hydraulic input parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信