P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer
{"title":"采用物理和机器学习混合方法的实时钻井液压仿真数字孪生","authors":"P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer","doi":"10.4043/31278-ms","DOIUrl":null,"url":null,"abstract":"\n Abnormal hydraulic event detection is essential for offshore well construction operations. These operations require model comparisons and real-time measurements. For this task, physics-based models, which need frequent manual calibration do not accurately capture all the hydraulic trends. The paper presents a method to overcome existing limitations by combining physics-based models with machine learning techniques, which are suited for time series forecasting. This method ensures accurate and reliable predictions during the forecasting period and helps remove the need for frequent manual calibration of the hydraulic input parameters.","PeriodicalId":10936,"journal":{"name":"Day 2 Tue, August 17, 2021","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Digital Twin for Real-Time Drilling Hydraulics Simulation Using a Hybrid Approach of Physics and Machine Learning\",\"authors\":\"P. Varadarajan, Ghislain Roguin, Nick Abolins, M. Ringer\",\"doi\":\"10.4043/31278-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Abnormal hydraulic event detection is essential for offshore well construction operations. These operations require model comparisons and real-time measurements. For this task, physics-based models, which need frequent manual calibration do not accurately capture all the hydraulic trends. The paper presents a method to overcome existing limitations by combining physics-based models with machine learning techniques, which are suited for time series forecasting. This method ensures accurate and reliable predictions during the forecasting period and helps remove the need for frequent manual calibration of the hydraulic input parameters.\",\"PeriodicalId\":10936,\"journal\":{\"name\":\"Day 2 Tue, August 17, 2021\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, August 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31278-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, August 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31278-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Digital Twin for Real-Time Drilling Hydraulics Simulation Using a Hybrid Approach of Physics and Machine Learning
Abnormal hydraulic event detection is essential for offshore well construction operations. These operations require model comparisons and real-time measurements. For this task, physics-based models, which need frequent manual calibration do not accurately capture all the hydraulic trends. The paper presents a method to overcome existing limitations by combining physics-based models with machine learning techniques, which are suited for time series forecasting. This method ensures accurate and reliable predictions during the forecasting period and helps remove the need for frequent manual calibration of the hydraulic input parameters.