衰减中心性与度中心性和接近中心性的二叉搜索算法

N. Meghanathan
{"title":"衰减中心性与度中心性和接近中心性的二叉搜索算法","authors":"N. Meghanathan","doi":"10.5539/cis.v10n2p52","DOIUrl":null,"url":null,"abstract":"Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ . We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ -search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ - space r ) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r . We show the use of the binary search algorithm to find the maximum Threshold PCC value r max (such that δ - space r max is positive) for a real-world network. We observe a very strong correlation between r max and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower r max value and vice-versa.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"1 1","pages":"52-75"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Binary Search Algorithm for Correlation Study of Decay Centrality vs. Degree Centrality and Closeness Centrality\",\"authors\":\"N. Meghanathan\",\"doi\":\"10.5539/cis.v10n2p52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ . We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ -search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ - space r ) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r . We show the use of the binary search algorithm to find the maximum Threshold PCC value r max (such that δ - space r max is positive) for a real-world network. We observe a very strong correlation between r max and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower r max value and vice-versa.\",\"PeriodicalId\":14676,\"journal\":{\"name\":\"J. Chem. Inf. Comput. Sci.\",\"volume\":\"1 1\",\"pages\":\"52-75\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Chem. Inf. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/cis.v10n2p52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v10n2p52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对48个真实网络的衰变中心性(DEC)与度中心性(DEG)和接近中心性(CLC)的相关性研究(使用Pearson相关系数,PCC)表明了一个有趣的趋势:PCC(DEC, DEG)随衰变参数δ (0 < δ < 1)的增大而减小,PCC(DEC, CLC)随δ的减小而减小。我们利用这种PCC值单调减少的趋势(从δ搜索空间的两侧),并提出了一种二分搜索算法(给定PCC的阈值r),该算法可用于识别真实世界网络的δ值(如果存在,我们说存在正δ空间r),使得PCC(DEC, DEG)≥r以及PCC(DEC, CLC)≥r。我们展示了使用二进制搜索算法来查找真实网络的最大阈值PCC值r max(使得δ空间r max为正)。我们观察到r最大值与PCC(DEG, CLC)之间存在很强的相关性,并且观察到现实世界中节点度变化较大的网络更有可能具有较低的r最大值,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Binary Search Algorithm for Correlation Study of Decay Centrality vs. Degree Centrality and Closeness Centrality
Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ . We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ -search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ - space r ) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r . We show the use of the binary search algorithm to find the maximum Threshold PCC value r max (such that δ - space r max is positive) for a real-world network. We observe a very strong correlation between r max and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower r max value and vice-versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信