SLAQ:分布式机器学习的质量驱动调度

Haoyu Zhang, Logan Stafman, Andrew Or, M. Freedman
{"title":"SLAQ:分布式机器学习的质量驱动调度","authors":"Haoyu Zhang, Logan Stafman, Andrew Or, M. Freedman","doi":"10.1145/3127479.3127490","DOIUrl":null,"url":null,"abstract":"Training machine learning (ML) models with large datasets can incur significant resource contention on shared clusters. This training typically involves many iterations that continually improve the quality of the model. Yet in exploratory settings, better models can be obtained faster by directing resources to jobs with the most potential for improvement. We describe SLAQ, a cluster scheduling system for approximate ML training jobs that aims to maximize the overall job quality. When allocating cluster resources, SLAQ explores the quality-runtime trade-offs across multiple jobs to maximize system-wide quality improvement. To do so, SLAQ leverages the iterative nature of ML training algorithms, by collecting quality and resource usage information from concurrent jobs, and then generating highly-tailored quality-improvement predictions for future iterations. Experiments show that SLAQ achieves an average quality improvement of up to 73% and an average delay reduction of up to 44% on a large set of ML training jobs, compared to resource fairness schedulers.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":"{\"title\":\"SLAQ: quality-driven scheduling for distributed machine learning\",\"authors\":\"Haoyu Zhang, Logan Stafman, Andrew Or, M. Freedman\",\"doi\":\"10.1145/3127479.3127490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training machine learning (ML) models with large datasets can incur significant resource contention on shared clusters. This training typically involves many iterations that continually improve the quality of the model. Yet in exploratory settings, better models can be obtained faster by directing resources to jobs with the most potential for improvement. We describe SLAQ, a cluster scheduling system for approximate ML training jobs that aims to maximize the overall job quality. When allocating cluster resources, SLAQ explores the quality-runtime trade-offs across multiple jobs to maximize system-wide quality improvement. To do so, SLAQ leverages the iterative nature of ML training algorithms, by collecting quality and resource usage information from concurrent jobs, and then generating highly-tailored quality-improvement predictions for future iterations. Experiments show that SLAQ achieves an average quality improvement of up to 73% and an average delay reduction of up to 44% on a large set of ML training jobs, compared to resource fairness schedulers.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"120\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3127490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3127490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

摘要

使用大型数据集训练机器学习(ML)模型可能会在共享集群上引起严重的资源争用。这种训练通常涉及许多不断改进模型质量的迭代。然而,在探索性环境中,通过将资源引导到最有改进潜力的工作上,可以更快地获得更好的模型。我们描述了SLAQ,一个近似ML训练作业的集群调度系统,旨在最大化整体作业质量。在分配集群资源时,SLAQ探索跨多个作业的质量-运行时权衡,以最大限度地提高系统范围的质量。为此,SLAQ利用ML训练算法的迭代特性,从并发作业中收集质量和资源使用信息,然后为未来的迭代生成高度定制的质量改进预测。实验表明,与资源公平调度器相比,SLAQ在大量ML训练任务上实现了高达73%的平均质量改进和高达44%的平均延迟减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SLAQ: quality-driven scheduling for distributed machine learning
Training machine learning (ML) models with large datasets can incur significant resource contention on shared clusters. This training typically involves many iterations that continually improve the quality of the model. Yet in exploratory settings, better models can be obtained faster by directing resources to jobs with the most potential for improvement. We describe SLAQ, a cluster scheduling system for approximate ML training jobs that aims to maximize the overall job quality. When allocating cluster resources, SLAQ explores the quality-runtime trade-offs across multiple jobs to maximize system-wide quality improvement. To do so, SLAQ leverages the iterative nature of ML training algorithms, by collecting quality and resource usage information from concurrent jobs, and then generating highly-tailored quality-improvement predictions for future iterations. Experiments show that SLAQ achieves an average quality improvement of up to 73% and an average delay reduction of up to 44% on a large set of ML training jobs, compared to resource fairness schedulers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信