{"title":"玉米秸秆切割能量需要量(单交704 Var)","authors":"M. Azadbakht, A. R. Asl, K. Zahedi","doi":"10.5281/ZENODO.1092496","DOIUrl":null,"url":null,"abstract":"Corn is cultivated in most countries because of high consumption, quality, and food value. This study evaluated needed energy for cutting corn stems in different levels of cutting height and moisture content. For this reason, test device was fabricated and then calibrated. The device works on the principle of conservation of energy. The results were analyzed using split plot design and SAS software. The results showed that effect of height and moisture content and their interaction effect on cutting energy are significant (P<1%). The maximum cutting energy was 3.22 kJ in 63 (w.b.%) moisture content and the minimum cutting energy was 1.63 kJ in 83.25 (w.b.%) moisture content.","PeriodicalId":23659,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering","volume":"3 1","pages":"479-482"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Energy Requirement For Cutting Corn Stalks (Single Cross 704 Var.)\",\"authors\":\"M. Azadbakht, A. R. Asl, K. Zahedi\",\"doi\":\"10.5281/ZENODO.1092496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corn is cultivated in most countries because of high consumption, quality, and food value. This study evaluated needed energy for cutting corn stems in different levels of cutting height and moisture content. For this reason, test device was fabricated and then calibrated. The device works on the principle of conservation of energy. The results were analyzed using split plot design and SAS software. The results showed that effect of height and moisture content and their interaction effect on cutting energy are significant (P<1%). The maximum cutting energy was 3.22 kJ in 63 (w.b.%) moisture content and the minimum cutting energy was 1.63 kJ in 83.25 (w.b.%) moisture content.\",\"PeriodicalId\":23659,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering\",\"volume\":\"3 1\",\"pages\":\"479-482\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1092496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1092496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy Requirement For Cutting Corn Stalks (Single Cross 704 Var.)
Corn is cultivated in most countries because of high consumption, quality, and food value. This study evaluated needed energy for cutting corn stems in different levels of cutting height and moisture content. For this reason, test device was fabricated and then calibrated. The device works on the principle of conservation of energy. The results were analyzed using split plot design and SAS software. The results showed that effect of height and moisture content and their interaction effect on cutting energy are significant (P<1%). The maximum cutting energy was 3.22 kJ in 63 (w.b.%) moisture content and the minimum cutting energy was 1.63 kJ in 83.25 (w.b.%) moisture content.