具有邻接效应的高光谱海洋遥感:从基于光谱变率的建模到相关盲解混合方法的性能

Y. Deville, Audrey Minghelli, X. Briottet, V. Serfaty, S. Brezini, Fatima Zohra Benhalouche, M. S. Karoui, M. Guillaume, X. Lenot, B. Lafrance, M. Chami, S. Jay
{"title":"具有邻接效应的高光谱海洋遥感:从基于光谱变率的建模到相关盲解混合方法的性能","authors":"Y. Deville, Audrey Minghelli, X. Briottet, V. Serfaty, S. Brezini, Fatima Zohra Benhalouche, M. S. Karoui, M. Guillaume, X. Lenot, B. Lafrance, M. Chami, S. Jay","doi":"10.1109/IGARSS.2019.8898430","DOIUrl":null,"url":null,"abstract":"In a very recent paper, we introduced (i) a specific hyper-spectral mixing model for the sea bottom, based on a detailed physical analysis which includes the adjacency effect, and (ii) an associated unmixing method, which is not blind in the sense that it requires a prior estimation of various parameters of that mixing model. We here proceed much further, by first analytically showing that this model can be seen as a specific member of the general class of mixing models involving spectral variability. Therefore, we then process such data with the IP-NMF and UP-NMF blind unmixing methods that we recently proposed in other works to handle spectral variability. Such a variability especially occurs when sea depth significantly varies over the considered scene, and we show that IP-NMF and UP-NMF then yield significantly better pure spectra estimation than a classical method from the literature which was not designed to handle such a variability.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"2014 1","pages":"282-285"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperspectral Oceanic Remote Sensing With Adjacency Effects: From Spectral-Variability-Based Modeling To Performance Of Associated Blind Unmixing Methods\",\"authors\":\"Y. Deville, Audrey Minghelli, X. Briottet, V. Serfaty, S. Brezini, Fatima Zohra Benhalouche, M. S. Karoui, M. Guillaume, X. Lenot, B. Lafrance, M. Chami, S. Jay\",\"doi\":\"10.1109/IGARSS.2019.8898430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a very recent paper, we introduced (i) a specific hyper-spectral mixing model for the sea bottom, based on a detailed physical analysis which includes the adjacency effect, and (ii) an associated unmixing method, which is not blind in the sense that it requires a prior estimation of various parameters of that mixing model. We here proceed much further, by first analytically showing that this model can be seen as a specific member of the general class of mixing models involving spectral variability. Therefore, we then process such data with the IP-NMF and UP-NMF blind unmixing methods that we recently proposed in other works to handle spectral variability. Such a variability especially occurs when sea depth significantly varies over the considered scene, and we show that IP-NMF and UP-NMF then yield significantly better pure spectra estimation than a classical method from the literature which was not designed to handle such a variability.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"2014 1\",\"pages\":\"282-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在最近的一篇论文中,我们介绍了(i)一种特定的海底高光谱混合模型,该模型基于详细的物理分析,其中包括邻接效应,以及(ii)一种相关的分解方法,该方法不是盲目的,因为它需要预先估计混合模型的各种参数。我们在这里更进一步,首先通过分析表明,该模型可以被视为涉及光谱变率的混合模型的一般类别的一个特定成员。因此,我们随后使用IP-NMF和UP-NMF盲解混方法处理这些数据,我们最近在其他工作中提出了这些方法来处理光谱变异性。这种变异性尤其发生在考虑的场景中,当海洋深度发生显著变化时,我们表明IP-NMF和UP-NMF产生的纯光谱估计明显优于文献中没有设计用于处理这种变异性的经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Oceanic Remote Sensing With Adjacency Effects: From Spectral-Variability-Based Modeling To Performance Of Associated Blind Unmixing Methods
In a very recent paper, we introduced (i) a specific hyper-spectral mixing model for the sea bottom, based on a detailed physical analysis which includes the adjacency effect, and (ii) an associated unmixing method, which is not blind in the sense that it requires a prior estimation of various parameters of that mixing model. We here proceed much further, by first analytically showing that this model can be seen as a specific member of the general class of mixing models involving spectral variability. Therefore, we then process such data with the IP-NMF and UP-NMF blind unmixing methods that we recently proposed in other works to handle spectral variability. Such a variability especially occurs when sea depth significantly varies over the considered scene, and we show that IP-NMF and UP-NMF then yield significantly better pure spectra estimation than a classical method from the literature which was not designed to handle such a variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信