基于精确基因融合模型的嵌合转录物检测新框架

F. Abate, A. Acquaviva, E. Ficarra, Giulia Paciello, E. Macii, A. Ferrarini, M. Delledonne, S. Soverini, G. Martinelli
{"title":"基于精确基因融合模型的嵌合转录物检测新框架","authors":"F. Abate, A. Acquaviva, E. Ficarra, Giulia Paciello, E. Macii, A. Ferrarini, M. Delledonne, S. Soverini, G. Martinelli","doi":"10.1109/BIBMW.2011.6112352","DOIUrl":null,"url":null,"abstract":"Next generation sequencing plays a key role in the detection of structural variations. Chimeric transcripts are relevant examples of such variations, as they are involved in several diseases. In this work, we propose an effective methodology for the detection of fused transcripts in RNA-Seq paired-end data. The proposed methodology is based on an accurate fusion model implemented by a set of filters reducing the impact of artifacts. Moreover, the methodology accounts for transcripts consistently expressing in the sample under study even if they are not annotated. The effectiveness of the proposed solution has been experimentally validated on of Chronic Myelogenous Leukemia (CML) samples, providing both the genes involved in the fusion and the exact chimeric sequence.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"11 1","pages":"34-41"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel framework for chimeric transcript detection based on accurate gene fusion model\",\"authors\":\"F. Abate, A. Acquaviva, E. Ficarra, Giulia Paciello, E. Macii, A. Ferrarini, M. Delledonne, S. Soverini, G. Martinelli\",\"doi\":\"10.1109/BIBMW.2011.6112352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next generation sequencing plays a key role in the detection of structural variations. Chimeric transcripts are relevant examples of such variations, as they are involved in several diseases. In this work, we propose an effective methodology for the detection of fused transcripts in RNA-Seq paired-end data. The proposed methodology is based on an accurate fusion model implemented by a set of filters reducing the impact of artifacts. Moreover, the methodology accounts for transcripts consistently expressing in the sample under study even if they are not annotated. The effectiveness of the proposed solution has been experimentally validated on of Chronic Myelogenous Leukemia (CML) samples, providing both the genes involved in the fusion and the exact chimeric sequence.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"11 1\",\"pages\":\"34-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代测序在结构变异检测中起着关键作用。嵌合转录物是这种变异的相关例子,因为它们与几种疾病有关。在这项工作中,我们提出了一种有效的方法来检测RNA-Seq配对端数据中的融合转录本。该方法基于精确的融合模型,通过一组过滤器实现,减少了伪影的影响。此外,该方法解释了在研究样本中一致表达的转录本,即使它们没有注释。该方案的有效性已在慢性髓性白血病(CML)样本上得到实验验证,提供了参与融合的基因和确切的嵌合序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel framework for chimeric transcript detection based on accurate gene fusion model
Next generation sequencing plays a key role in the detection of structural variations. Chimeric transcripts are relevant examples of such variations, as they are involved in several diseases. In this work, we propose an effective methodology for the detection of fused transcripts in RNA-Seq paired-end data. The proposed methodology is based on an accurate fusion model implemented by a set of filters reducing the impact of artifacts. Moreover, the methodology accounts for transcripts consistently expressing in the sample under study even if they are not annotated. The effectiveness of the proposed solution has been experimentally validated on of Chronic Myelogenous Leukemia (CML) samples, providing both the genes involved in the fusion and the exact chimeric sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信