Harper-Hofstadter模型中的相干和退相干

Qi-Yu Liang, D. Trypogeorgos, A. Vald'es-Curiel, J. Tao, Mingshu Zhao, I. Spielman
{"title":"Harper-Hofstadter模型中的相干和退相干","authors":"Qi-Yu Liang, D. Trypogeorgos, A. Vald'es-Curiel, J. Tao, Mingshu Zhao, I. Spielman","doi":"10.1103/PHYSREVRESEARCH.3.023058","DOIUrl":null,"url":null,"abstract":"We quantum-simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry -- three sites in circumference -- using an atomic Bose-Einstein condensate. In addition to the usual transverse (out-of-plane) magnetic flux, piercing the surface of the tube, we threaded a longitudinal flux $\\Phi_{\\rm L}$ down the axis of the tube This geometry evokes an Aharonov-Bohm interferometer, where noise in $\\Phi_{\\rm L}$ would readily decohere the interference present in trajectories encircling the tube. We observe this behavior only when transverse flux is a rational fraction of the flux-quantum, and remarkably find that for irrational fractions the decoherence is absent. Furthermore, at rational values of transverse flux, we show that the time evolution averaged over the noisy longitudinal flux matches the time evolution at nearby irrational fluxes. Thus, the appealing intuitive picture of an Aharonov-Bohm interferometer is insufficient. Instead, we quantitatively explain our observations by transforming the HH model into a collection of momentum-space Aubry-Andr\\'{e} models.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Coherence and decoherence in the Harper-Hofstadter model\",\"authors\":\"Qi-Yu Liang, D. Trypogeorgos, A. Vald'es-Curiel, J. Tao, Mingshu Zhao, I. Spielman\",\"doi\":\"10.1103/PHYSREVRESEARCH.3.023058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We quantum-simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry -- three sites in circumference -- using an atomic Bose-Einstein condensate. In addition to the usual transverse (out-of-plane) magnetic flux, piercing the surface of the tube, we threaded a longitudinal flux $\\\\Phi_{\\\\rm L}$ down the axis of the tube This geometry evokes an Aharonov-Bohm interferometer, where noise in $\\\\Phi_{\\\\rm L}$ would readily decohere the interference present in trajectories encircling the tube. We observe this behavior only when transverse flux is a rational fraction of the flux-quantum, and remarkably find that for irrational fractions the decoherence is absent. Furthermore, at rational values of transverse flux, we show that the time evolution averaged over the noisy longitudinal flux matches the time evolution at nearby irrational fluxes. Thus, the appealing intuitive picture of an Aharonov-Bohm interferometer is insufficient. Instead, we quantitatively explain our observations by transforming the HH model into a collection of momentum-space Aubry-Andr\\\\'{e} models.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVRESEARCH.3.023058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.023058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们使用原子玻色-爱因斯坦凝聚体,在高度细长的管几何(圆周上有三个位置)中量子模拟了二维哈珀-霍夫施塔特(HH)晶格模型。除了通常穿过管表面的横向(面外)磁通之外,我们还沿着管的轴线插入了纵向磁通$\Phi_{\rm L}$,这种几何形状让人想起了阿哈罗诺夫-玻姆干涉仪,其中$\Phi_{\rm L}$中的噪声会很容易地消去存在于绕管轨迹中的干涉。只有当横向通量是通量量子的有理分数时,我们才观察到这种行为,并且显著地发现,对于非理性分数,退相干是不存在的。此外,在横向通量的有理值处,我们证明了噪声纵向通量的时间演化平均值与附近的非理性通量的时间演化相匹配。因此,阿哈罗诺夫-玻姆干涉仪吸引人的直观图像是不够的。相反,我们通过将HH模型转换为动量空间Aubry-Andr模型的集合来定量地解释我们的观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherence and decoherence in the Harper-Hofstadter model
We quantum-simulated the 2D Harper-Hofstadter (HH) lattice model in a highly elongated tube geometry -- three sites in circumference -- using an atomic Bose-Einstein condensate. In addition to the usual transverse (out-of-plane) magnetic flux, piercing the surface of the tube, we threaded a longitudinal flux $\Phi_{\rm L}$ down the axis of the tube This geometry evokes an Aharonov-Bohm interferometer, where noise in $\Phi_{\rm L}$ would readily decohere the interference present in trajectories encircling the tube. We observe this behavior only when transverse flux is a rational fraction of the flux-quantum, and remarkably find that for irrational fractions the decoherence is absent. Furthermore, at rational values of transverse flux, we show that the time evolution averaged over the noisy longitudinal flux matches the time evolution at nearby irrational fluxes. Thus, the appealing intuitive picture of an Aharonov-Bohm interferometer is insufficient. Instead, we quantitatively explain our observations by transforming the HH model into a collection of momentum-space Aubry-Andr\'{e} models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信