基于联邦学习的强化学习资源调度

Yabin Wang, J. Yu
{"title":"基于联邦学习的强化学习资源调度","authors":"Yabin Wang, J. Yu","doi":"10.17706/jsw.16.1.39-45","DOIUrl":null,"url":null,"abstract":"The emergence of edge computing makes up for the limited capacity of devices. By migrating intensive computing tasks from them to edge nodes (EN), we can save more energy while still maintaining the quality of service. Computing offload decision involves collaboration and complex resource management. It should be determined in real time according to dynamic workload and network environment. The simulation experiment method is used to maximize the long-term utility by deploying deep reinforcement learning agents on IOT devices and edge nodes, and the alliance learning is introduced to distribute the deep reinforcement learning agents. First, build the Internet of things system supporting edge computing, download the existing model from the edge node for training, and unload the intensive computing task to the edge node for training; upload the updated parameters to the edge node, and the edge node aggregates the parameters with the The model at the edge node can get a new model; the cloud can get a new model at the edge node and aggregate, and can also get updated parameters from the edge node to apply to the device.","PeriodicalId":11452,"journal":{"name":"e Informatica Softw. Eng. J.","volume":"4 1","pages":"39-45"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource Scheduling Based on Reinforcement Learning Based on Federated Learning\",\"authors\":\"Yabin Wang, J. Yu\",\"doi\":\"10.17706/jsw.16.1.39-45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of edge computing makes up for the limited capacity of devices. By migrating intensive computing tasks from them to edge nodes (EN), we can save more energy while still maintaining the quality of service. Computing offload decision involves collaboration and complex resource management. It should be determined in real time according to dynamic workload and network environment. The simulation experiment method is used to maximize the long-term utility by deploying deep reinforcement learning agents on IOT devices and edge nodes, and the alliance learning is introduced to distribute the deep reinforcement learning agents. First, build the Internet of things system supporting edge computing, download the existing model from the edge node for training, and unload the intensive computing task to the edge node for training; upload the updated parameters to the edge node, and the edge node aggregates the parameters with the The model at the edge node can get a new model; the cloud can get a new model at the edge node and aggregate, and can also get updated parameters from the edge node to apply to the device.\",\"PeriodicalId\":11452,\"journal\":{\"name\":\"e Informatica Softw. Eng. J.\",\"volume\":\"4 1\",\"pages\":\"39-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e Informatica Softw. Eng. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17706/jsw.16.1.39-45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e Informatica Softw. Eng. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/jsw.16.1.39-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

边缘计算的出现弥补了设备容量的有限性。通过将密集的计算任务从边缘节点迁移到边缘节点,我们可以在保持服务质量的同时节省更多的能源。计算卸载决策涉及协作和复杂的资源管理。需要根据动态工作负载和网络环境实时确定。采用仿真实验方法,在IOT设备和边缘节点上部署深度强化学习代理,实现长期效用最大化,并引入联盟学习对深度强化学习代理进行分布。首先,构建支持边缘计算的物联网系统,从边缘节点下载现有模型进行训练,将密集的计算任务卸载到边缘节点进行训练;将更新后的参数上传到边缘节点,边缘节点将参数与边缘节点上的模型进行聚合,得到一个新的模型;云可以在边缘节点和聚合处获得新的模型,也可以从边缘节点获得更新的参数以应用于设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource Scheduling Based on Reinforcement Learning Based on Federated Learning
The emergence of edge computing makes up for the limited capacity of devices. By migrating intensive computing tasks from them to edge nodes (EN), we can save more energy while still maintaining the quality of service. Computing offload decision involves collaboration and complex resource management. It should be determined in real time according to dynamic workload and network environment. The simulation experiment method is used to maximize the long-term utility by deploying deep reinforcement learning agents on IOT devices and edge nodes, and the alliance learning is introduced to distribute the deep reinforcement learning agents. First, build the Internet of things system supporting edge computing, download the existing model from the edge node for training, and unload the intensive computing task to the edge node for training; upload the updated parameters to the edge node, and the edge node aggregates the parameters with the The model at the edge node can get a new model; the cloud can get a new model at the edge node and aggregate, and can also get updated parameters from the edge node to apply to the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信