smw法堆焊高合金铁基堆焊材料的抗空蚀性

Q3 Engineering
M. Szala, Tadeusz Hejwowski
{"title":"smw法堆焊高合金铁基堆焊材料的抗空蚀性","authors":"M. Szala, Tadeusz Hejwowski","doi":"10.5604/01.3001.0016.1616","DOIUrl":null,"url":null,"abstract":"In order to investigate the cavitation erosion (CE) resistance of high-alloyed ferrous hardfacings, the three\ndifferent deposits were pad welded by the shielded metal arc welding (SMAW) method. Consumable\nelectrodes differed in the content of carbide-forming elements, and pad welds were deposited onto the S235JR\nstructural. The CE tests, conducted according to ASTM G32 standard, indicated that hardfacings reveal\nlower mass loss than the reference stainless steel AISI 304 (X5CrNi18-10). The hardfacings show increasing\nresistance to CE in the following order: Cr-C < Cr-C-Mo < Cr-C-Mo-V-W. The reference steel revealed more\nthan twenty times higher material loss in the CE test than Cr-C-Mo-V-W hardfacing, which had outstanding\nhardness (825HV0.3). The profilometric measurements and scanning electron microscopy investigations\nshowed large changes in valley and peak sizes of the roughness profiles for materials which displayed high\nerosion rates. The erosion mechanism of the coatings can be classified as brittle-ductile and relies on cracking,\nchunk removal of material, pits and craters formation, and deformation of fractured material tips and edges.\nHardfacing materials failed primarily due to brittle fractures with different severities. Specimen surface\ndegradation follows the changes in Ra, Rz, Rv, and Rp roughness parameters and well-corresponds to the\nproposed roughness rate (RR) parameter.\n\n","PeriodicalId":35004,"journal":{"name":"Tribologia: Finnish Journal of Tribology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAVITATION EROSION RESISTANCE OF HIGH-ALLOYED\\nFe-BASED WELD HARDFACINGS DEPOSITED VIA SMAW\\nMETHOD\",\"authors\":\"M. Szala, Tadeusz Hejwowski\",\"doi\":\"10.5604/01.3001.0016.1616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to investigate the cavitation erosion (CE) resistance of high-alloyed ferrous hardfacings, the three\\ndifferent deposits were pad welded by the shielded metal arc welding (SMAW) method. Consumable\\nelectrodes differed in the content of carbide-forming elements, and pad welds were deposited onto the S235JR\\nstructural. The CE tests, conducted according to ASTM G32 standard, indicated that hardfacings reveal\\nlower mass loss than the reference stainless steel AISI 304 (X5CrNi18-10). The hardfacings show increasing\\nresistance to CE in the following order: Cr-C < Cr-C-Mo < Cr-C-Mo-V-W. The reference steel revealed more\\nthan twenty times higher material loss in the CE test than Cr-C-Mo-V-W hardfacing, which had outstanding\\nhardness (825HV0.3). The profilometric measurements and scanning electron microscopy investigations\\nshowed large changes in valley and peak sizes of the roughness profiles for materials which displayed high\\nerosion rates. The erosion mechanism of the coatings can be classified as brittle-ductile and relies on cracking,\\nchunk removal of material, pits and craters formation, and deformation of fractured material tips and edges.\\nHardfacing materials failed primarily due to brittle fractures with different severities. Specimen surface\\ndegradation follows the changes in Ra, Rz, Rv, and Rp roughness parameters and well-corresponds to the\\nproposed roughness rate (RR) parameter.\\n\\n\",\"PeriodicalId\":35004,\"journal\":{\"name\":\"Tribologia: Finnish Journal of Tribology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribologia: Finnish Journal of Tribology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0016.1616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribologia: Finnish Journal of Tribology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.1616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

为了研究高合金铁堆焊层的抗气蚀性,采用保护金属电弧焊(SMAW)方法对三种不同的堆焊层进行了焊敷。可焊电极中碳化物形成元素含量不同,焊焊缝沉积在s235jr结构上。根据ASTM G32标准进行的CE测试表明,堆焊面比参考不锈钢AISI 304 (X5CrNi18-10)的质量损失更小。堆焊表面抗CE性能的增强顺序为:Cr-C < Cr-C- mo < Cr-C- mo - v - w。参考钢在CE测试中显示的材料损耗比Cr-C-Mo-V-W堆焊高20倍以上,后者具有出色的硬度(825HV0.3)。轮廓测量和扫描电镜研究表明,高侵蚀率材料的粗糙度轮廓的谷和峰尺寸变化很大。涂层的侵蚀机制可分为脆性-韧性,主要依赖于材料的开裂、块状去除、凹坑和陨石坑的形成以及断裂材料尖端和边缘的变形。堆焊材料失效的主要原因是不同程度的脆性断裂。试样的表面降解遵循Ra, Rz, Rv和Rp粗糙度参数的变化,并且与提出的粗糙度率(RR)参数很好地对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAVITATION EROSION RESISTANCE OF HIGH-ALLOYED Fe-BASED WELD HARDFACINGS DEPOSITED VIA SMAW METHOD
In order to investigate the cavitation erosion (CE) resistance of high-alloyed ferrous hardfacings, the three different deposits were pad welded by the shielded metal arc welding (SMAW) method. Consumable electrodes differed in the content of carbide-forming elements, and pad welds were deposited onto the S235JR structural. The CE tests, conducted according to ASTM G32 standard, indicated that hardfacings reveal lower mass loss than the reference stainless steel AISI 304 (X5CrNi18-10). The hardfacings show increasing resistance to CE in the following order: Cr-C < Cr-C-Mo < Cr-C-Mo-V-W. The reference steel revealed more than twenty times higher material loss in the CE test than Cr-C-Mo-V-W hardfacing, which had outstanding hardness (825HV0.3). The profilometric measurements and scanning electron microscopy investigations showed large changes in valley and peak sizes of the roughness profiles for materials which displayed high erosion rates. The erosion mechanism of the coatings can be classified as brittle-ductile and relies on cracking, chunk removal of material, pits and craters formation, and deformation of fractured material tips and edges. Hardfacing materials failed primarily due to brittle fractures with different severities. Specimen surface degradation follows the changes in Ra, Rz, Rv, and Rp roughness parameters and well-corresponds to the proposed roughness rate (RR) parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribologia: Finnish Journal of Tribology
Tribologia: Finnish Journal of Tribology Materials Science-Surfaces, Coatings and Films
CiteScore
2.20
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信