{"title":"完全神奇的亲切标签","authors":"P. Jeyanthi, N. A. Benseera, M. Mary","doi":"10.55937/sut/1378308983","DOIUrl":null,"url":null,"abstract":"A graph G is said to have totally magic cordial(TMC) labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1, where nf (i)(i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we investigate some new families of graphs that admit totally magic cordial labeling. AMS 2010 Mathematics Subject Classification. 05C78.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On totally magic cordial labeling\",\"authors\":\"P. Jeyanthi, N. A. Benseera, M. Mary\",\"doi\":\"10.55937/sut/1378308983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph G is said to have totally magic cordial(TMC) labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1, where nf (i)(i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we investigate some new families of graphs that admit totally magic cordial labeling. AMS 2010 Mathematics Subject Classification. 05C78.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1378308983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1378308983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
摘要
图G据说完全魔法的亲切与常数C (TMC)标签如果存在一个映射f: V (G)∪E (G)→{0,1},(一个)+ f (b) + f (ab) C≡所有ab∈(mod 2) E (G)和| nf(0)−nf(1) |≤1,在nf (i) (i = 0,1)是顶点和边的数量的总和与标签我。在这篇文章中,我们研究一些新的家庭承认的图形完全魔法亲切标签。AMS 2010数学学科分类。05 5c78。
A graph G is said to have totally magic cordial(TMC) labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1, where nf (i)(i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we investigate some new families of graphs that admit totally magic cordial labeling. AMS 2010 Mathematics Subject Classification. 05C78.