布基纳法索Nakanbe-Wayen流域1981-2020年降水时空演变及地表水资源管理

IF 1.6 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Wennepinguere Virginie Marie Yameogo, Y. L. Akpa, J. Danumah, F. Traoré, Boalidioa Tankoano, Z. Sanon, Oumar Kaboré, M. Hien
{"title":"布基纳法索Nakanbe-Wayen流域1981-2020年降水时空演变及地表水资源管理","authors":"Wennepinguere Virginie Marie Yameogo, Y. L. Akpa, J. Danumah, F. Traoré, Boalidioa Tankoano, Z. Sanon, Oumar Kaboré, M. Hien","doi":"10.3390/earth4030032","DOIUrl":null,"url":null,"abstract":"Spatio-temporal analysis of rainfall trends in a watershed is an effective tool for sustainable water resources management, as it allows for an understanding of the impacts of these changes at the watershed scale. The objective of the present study is to analyze the impacts of climate change on the availability of surface water resources in the Nakanbe–Wayen watershed over the period from 1981 to 2020. The analysis was conducted on in situ rainfall data collected from 14 meteorological stations distributed throughout the watershed and completed with CHIRPS data. Ten precipitation indices, recommended by the ETCCDI (Expert Team on Climate Change Detection and Indices), were calculated using the RClimDex package. The results show changes in the distribution of annual precipitation and an increasing trend in annual precipitation. At the same time, a trend towards an increase in the occurrence and intensity of extreme events was also observed over the last 4 decades. In light of these analyses, it should be emphasized that the increase in precipitation observed in the Nakanbe–Wayen watershed is induced by the increase in the occurrence and intensity of events, as a trend towards an increase in persistent drought periods (CDD) is observed. This indicates that the watershed is suffering from water scarcity. Water stress and water-related hazards have a major impact on communities and ecosystems. In these conditions of vulnerability, the development of risk-management strategies related to water resources is necessary, especially at the local scale. This should be formulated in light of observed and projected climate extremes in order to propose an appropriate and anticipated management strategy for climate risks related to water resources at the watershed scale.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatio-Temporal Evolution of Rainfall over the Period 1981–2020 and Management of Surface Water Resources in the Nakanbe–Wayen Watershed in Burkina Faso\",\"authors\":\"Wennepinguere Virginie Marie Yameogo, Y. L. Akpa, J. Danumah, F. Traoré, Boalidioa Tankoano, Z. Sanon, Oumar Kaboré, M. Hien\",\"doi\":\"10.3390/earth4030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatio-temporal analysis of rainfall trends in a watershed is an effective tool for sustainable water resources management, as it allows for an understanding of the impacts of these changes at the watershed scale. The objective of the present study is to analyze the impacts of climate change on the availability of surface water resources in the Nakanbe–Wayen watershed over the period from 1981 to 2020. The analysis was conducted on in situ rainfall data collected from 14 meteorological stations distributed throughout the watershed and completed with CHIRPS data. Ten precipitation indices, recommended by the ETCCDI (Expert Team on Climate Change Detection and Indices), were calculated using the RClimDex package. The results show changes in the distribution of annual precipitation and an increasing trend in annual precipitation. At the same time, a trend towards an increase in the occurrence and intensity of extreme events was also observed over the last 4 decades. In light of these analyses, it should be emphasized that the increase in precipitation observed in the Nakanbe–Wayen watershed is induced by the increase in the occurrence and intensity of events, as a trend towards an increase in persistent drought periods (CDD) is observed. This indicates that the watershed is suffering from water scarcity. Water stress and water-related hazards have a major impact on communities and ecosystems. In these conditions of vulnerability, the development of risk-management strategies related to water resources is necessary, especially at the local scale. This should be formulated in light of observed and projected climate extremes in order to propose an appropriate and anticipated management strategy for climate risks related to water resources at the watershed scale.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/earth4030032\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/earth4030032","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

流域降雨趋势的时空分析是可持续水资源管理的有效工具,因为它允许在流域尺度上了解这些变化的影响。本文旨在分析1981 - 2020年气候变化对Nakanbe-Wayen流域地表水资源可得性的影响。对分布在流域内的14个气象站的现场降雨数据进行分析,并利用CHIRPS数据完成。利用RClimDex软件包计算了ETCCDI(气候变化探测和指数专家组)推荐的10个降水指数。结果表明,年降水量分布发生了变化,年降水量呈增加趋势。与此同时,在过去40年里,还观察到极端事件的发生和强度有增加的趋势。根据这些分析,应该强调的是,在Nakanbe-Wayen流域观测到的降水增加是由事件发生和强度增加引起的,因为观察到持续干旱期(CDD)增加的趋势。这表明该流域正遭受缺水之苦。水资源压力和与水有关的灾害对社区和生态系统产生重大影响。在这些易受伤害的情况下,必须制订与水资源有关的风险管理战略,特别是在地方一级。应根据观测到的和预测到的极端气候来制定这一战略,以便就流域尺度上与水资源有关的气候风险提出适当和预期的管理战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Temporal Evolution of Rainfall over the Period 1981–2020 and Management of Surface Water Resources in the Nakanbe–Wayen Watershed in Burkina Faso
Spatio-temporal analysis of rainfall trends in a watershed is an effective tool for sustainable water resources management, as it allows for an understanding of the impacts of these changes at the watershed scale. The objective of the present study is to analyze the impacts of climate change on the availability of surface water resources in the Nakanbe–Wayen watershed over the period from 1981 to 2020. The analysis was conducted on in situ rainfall data collected from 14 meteorological stations distributed throughout the watershed and completed with CHIRPS data. Ten precipitation indices, recommended by the ETCCDI (Expert Team on Climate Change Detection and Indices), were calculated using the RClimDex package. The results show changes in the distribution of annual precipitation and an increasing trend in annual precipitation. At the same time, a trend towards an increase in the occurrence and intensity of extreme events was also observed over the last 4 decades. In light of these analyses, it should be emphasized that the increase in precipitation observed in the Nakanbe–Wayen watershed is induced by the increase in the occurrence and intensity of events, as a trend towards an increase in persistent drought periods (CDD) is observed. This indicates that the watershed is suffering from water scarcity. Water stress and water-related hazards have a major impact on communities and ecosystems. In these conditions of vulnerability, the development of risk-management strategies related to water resources is necessary, especially at the local scale. This should be formulated in light of observed and projected climate extremes in order to propose an appropriate and anticipated management strategy for climate risks related to water resources at the watershed scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Interactions
Earth Interactions 地学-地球科学综合
CiteScore
2.70
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信