{"title":"锗纳米结构中工艺诱导的应变带隙减小","authors":"P. Velha, D. Paul, M. Myronov, D. Leadley","doi":"10.1364/CLEO_SI.2012.CTH3D.1","DOIUrl":null,"url":null,"abstract":"We studied the photoluminescence of tensile strained germanium nanostructures. Sub-micron gratings and pillars were fabricated before being coated with strained silicon nitride films. Using different deposition conditions and different sizes of structures the stress in the nanostructures can be controlled. The measured optical properties of the samples show that the direct band-gap is shifted drastically towards higher wavelengths over 1.9 μm. This local control of the stress in germanium nanostructures opens the route for both emitters and photodetectors above 1.6 μm wavelength which are not easily available and also potentially towards a germanium laser.","PeriodicalId":6442,"journal":{"name":"2012 Conference on Lasers and Electro-Optics (CLEO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Process-induced strain bandgap reduction in Germanium nanostructures\",\"authors\":\"P. Velha, D. Paul, M. Myronov, D. Leadley\",\"doi\":\"10.1364/CLEO_SI.2012.CTH3D.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the photoluminescence of tensile strained germanium nanostructures. Sub-micron gratings and pillars were fabricated before being coated with strained silicon nitride films. Using different deposition conditions and different sizes of structures the stress in the nanostructures can be controlled. The measured optical properties of the samples show that the direct band-gap is shifted drastically towards higher wavelengths over 1.9 μm. This local control of the stress in germanium nanostructures opens the route for both emitters and photodetectors above 1.6 μm wavelength which are not easily available and also potentially towards a germanium laser.\",\"PeriodicalId\":6442,\"journal\":{\"name\":\"2012 Conference on Lasers and Electro-Optics (CLEO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Lasers and Electro-Optics (CLEO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/CLEO_SI.2012.CTH3D.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Lasers and Electro-Optics (CLEO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/CLEO_SI.2012.CTH3D.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Process-induced strain bandgap reduction in Germanium nanostructures
We studied the photoluminescence of tensile strained germanium nanostructures. Sub-micron gratings and pillars were fabricated before being coated with strained silicon nitride films. Using different deposition conditions and different sizes of structures the stress in the nanostructures can be controlled. The measured optical properties of the samples show that the direct band-gap is shifted drastically towards higher wavelengths over 1.9 μm. This local control of the stress in germanium nanostructures opens the route for both emitters and photodetectors above 1.6 μm wavelength which are not easily available and also potentially towards a germanium laser.