由态射生成的有向分裂图的半可及性

IF 0.4 Q4 MATHEMATICS, APPLIED
Kittitat Iamthong, S. Kitaev
{"title":"由态射生成的有向分裂图的半可及性","authors":"Kittitat Iamthong, S. Kitaev","doi":"10.4310/joc.2023.v14.n1.a5","DOIUrl":null,"url":null,"abstract":"A directed graph is semi-transitive if and only if it is acyclic and for any directed path $u_1\\rightarrow u_2\\rightarrow \\cdots \\rightarrow u_t$, $t \\geq 2$, either there is no edge from $u_1$ to $u_t$ or all edges $u_i\\rightarrow u_j$ exist for $1 \\leq i<j \\leq t$. In this paper, we study semi-transitivity of families of directed split graphs obtained by iterations of morphisms applied to the adjacency matrices and giving in the limit infinite directed split graphs. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. We fully classify semi-transitive infinite directed split graphs when a morphism in question can involve any $n\\times m$ matrices over $\\{-1,0,1\\}$ with a single natural condition.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"15 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Semi-transitivity of directed split graphs generated by morphisms\",\"authors\":\"Kittitat Iamthong, S. Kitaev\",\"doi\":\"10.4310/joc.2023.v14.n1.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A directed graph is semi-transitive if and only if it is acyclic and for any directed path $u_1\\\\rightarrow u_2\\\\rightarrow \\\\cdots \\\\rightarrow u_t$, $t \\\\geq 2$, either there is no edge from $u_1$ to $u_t$ or all edges $u_i\\\\rightarrow u_j$ exist for $1 \\\\leq i<j \\\\leq t$. In this paper, we study semi-transitivity of families of directed split graphs obtained by iterations of morphisms applied to the adjacency matrices and giving in the limit infinite directed split graphs. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. We fully classify semi-transitive infinite directed split graphs when a morphism in question can involve any $n\\\\times m$ matrices over $\\\\{-1,0,1\\\\}$ with a single natural condition.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2023.v14.n1.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n1.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

一个有向图是半传递的当且仅当它是非循环的,并且对于任何有向路径$u_1\rightarrow u_2\rightarrow \cdots \rightarrow u_t$, $t \geq 2$,要么没有从$u_1$到$u_t$的边,要么$1 \leq i本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Semi-transitivity of directed split graphs generated by morphisms
A directed graph is semi-transitive if and only if it is acyclic and for any directed path $u_1\rightarrow u_2\rightarrow \cdots \rightarrow u_t$, $t \geq 2$, either there is no edge from $u_1$ to $u_t$ or all edges $u_i\rightarrow u_j$ exist for $1 \leq i
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信