{"title":"煤矿综采废石充填及其应用","authors":"Xie-xing MIAO , Ji-xiong ZHANG , Mei-mei FENG","doi":"10.1016/S1006-1266(08)60279-5","DOIUrl":null,"url":null,"abstract":"<div><p>A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.</p></div>","PeriodicalId":15315,"journal":{"name":"Journal of China University of Mining and Technology","volume":"18 4","pages":"Pages 479-482"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1006-1266(08)60279-5","citationCount":"50","resultStr":"{\"title\":\"Waste-filling in fully-mechanized coal mining and its application\",\"authors\":\"Xie-xing MIAO , Ji-xiong ZHANG , Mei-mei FENG\",\"doi\":\"10.1016/S1006-1266(08)60279-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.</p></div>\",\"PeriodicalId\":15315,\"journal\":{\"name\":\"Journal of China University of Mining and Technology\",\"volume\":\"18 4\",\"pages\":\"Pages 479-482\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1006-1266(08)60279-5\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China University of Mining and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1006126608602795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China University of Mining and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1006126608602795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Waste-filling in fully-mechanized coal mining and its application
A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.