一种增强可扩展数据挖掘预测问题的智能方法

K. Fouad, Tarek Elsheshtawy, Mohamed F. Dawood
{"title":"一种增强可扩展数据挖掘预测问题的智能方法","authors":"K. Fouad, Tarek Elsheshtawy, Mohamed F. Dawood","doi":"10.4018/IJSKD.2021040108","DOIUrl":null,"url":null,"abstract":"Support vector regression (SVR) is one of the supervised machine learning algorithms that can be exploited for prediction issues. The main enhancement issue of SVR is attempting to select a reliable parameter to assure the high performance of SVR. In this paper, the intelligent approach is based on integrating the enhanced particle swarm optimization PSO with the SVR to achieve the proper SVR parameters that are used to improve SVR performance. The enhanced PSO is performed by implementing parallelized linear time-variant acceleration coefficients (TVAC) and inertia weight (IW) of PSO, called PLTVACIW-PSO. The proposed approach is evaluated by performing the experimental comparisons of the proposed algorithm with eleven different algorithms. These comparisons are performed by applying the proposed algorithm and these algorithms to 21 different datasets varying in their scales.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"91 8 1","pages":"119-152"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Approach for Enhancing Prediction Issues in Scalable Data Mining\",\"authors\":\"K. Fouad, Tarek Elsheshtawy, Mohamed F. Dawood\",\"doi\":\"10.4018/IJSKD.2021040108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support vector regression (SVR) is one of the supervised machine learning algorithms that can be exploited for prediction issues. The main enhancement issue of SVR is attempting to select a reliable parameter to assure the high performance of SVR. In this paper, the intelligent approach is based on integrating the enhanced particle swarm optimization PSO with the SVR to achieve the proper SVR parameters that are used to improve SVR performance. The enhanced PSO is performed by implementing parallelized linear time-variant acceleration coefficients (TVAC) and inertia weight (IW) of PSO, called PLTVACIW-PSO. The proposed approach is evaluated by performing the experimental comparisons of the proposed algorithm with eleven different algorithms. These comparisons are performed by applying the proposed algorithm and these algorithms to 21 different datasets varying in their scales.\",\"PeriodicalId\":13656,\"journal\":{\"name\":\"Int. J. Sociotechnology Knowl. Dev.\",\"volume\":\"91 8 1\",\"pages\":\"119-152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Sociotechnology Knowl. Dev.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSKD.2021040108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSKD.2021040108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

支持向量回归(SVR)是一种可用于预测问题的监督机器学习算法。SVR的主要增强问题是如何选择可靠的参数来保证SVR的高性能。本文的智能方法是将增强粒子群优化粒子群算法与支持向量回归算法相结合,以获得适当的支持向量回归算法参数,从而提高支持向量回归算法的性能。通过并行化线性时变加速度系数(TVAC)和惯性权重(IW)实现PSO的增强,称为PLTVACIW-PSO。通过与11种不同的算法进行实验比较,对所提出的方法进行了评估。这些比较是通过将提出的算法和这些算法应用于21个不同尺度的不同数据集来进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Approach for Enhancing Prediction Issues in Scalable Data Mining
Support vector regression (SVR) is one of the supervised machine learning algorithms that can be exploited for prediction issues. The main enhancement issue of SVR is attempting to select a reliable parameter to assure the high performance of SVR. In this paper, the intelligent approach is based on integrating the enhanced particle swarm optimization PSO with the SVR to achieve the proper SVR parameters that are used to improve SVR performance. The enhanced PSO is performed by implementing parallelized linear time-variant acceleration coefficients (TVAC) and inertia weight (IW) of PSO, called PLTVACIW-PSO. The proposed approach is evaluated by performing the experimental comparisons of the proposed algorithm with eleven different algorithms. These comparisons are performed by applying the proposed algorithm and these algorithms to 21 different datasets varying in their scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信