细长半模格的循环同余与有限结构的非有限公理化性

IF 0.5 Q3 MATHEMATICS
G. Czédli
{"title":"细长半模格的循环同余与有限结构的非有限公理化性","authors":"G. Czédli","doi":"10.5817/am2022-1-15","DOIUrl":null,"url":null,"abstract":". We give a new proof of the fact that finite bipartite graphs cannot be axiomatized by finitely many first-order sentences among finite graphs. (This fact is a consequence of a general theorem proved by L. Ham and M. Jackson, and the counterpart of this fact for all bipartite graphs in the class of all graphs is a well-known consequence of the compactness theorem.) Also, to exemplify that our method is applicable in various fields of mathematics, we prove that neither finite simple groups, nor the ordered sets of join-irreducible congruences of slim semimodular lattices can be described by finitely many axioms in the class of finite structures. Since a 2007 result of G. Grätzer and E. Knapp, slim semimodular lattices have constituted the most intensively studied part of lattice theory and they have already led to results even in group theory and geometry. In addition to the non-axiomatizability results mentioned above, we present a new property, called Decomposable Cyclic Elements Property, of the congruence lattices of slim semimodular lattices.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"122 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures\",\"authors\":\"G. Czédli\",\"doi\":\"10.5817/am2022-1-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give a new proof of the fact that finite bipartite graphs cannot be axiomatized by finitely many first-order sentences among finite graphs. (This fact is a consequence of a general theorem proved by L. Ham and M. Jackson, and the counterpart of this fact for all bipartite graphs in the class of all graphs is a well-known consequence of the compactness theorem.) Also, to exemplify that our method is applicable in various fields of mathematics, we prove that neither finite simple groups, nor the ordered sets of join-irreducible congruences of slim semimodular lattices can be described by finitely many axioms in the class of finite structures. Since a 2007 result of G. Grätzer and E. Knapp, slim semimodular lattices have constituted the most intensively studied part of lattice theory and they have already led to results even in group theory and geometry. In addition to the non-axiomatizability results mentioned above, we present a new property, called Decomposable Cyclic Elements Property, of the congruence lattices of slim semimodular lattices.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2022-1-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-1-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

. 给出了有限二部图不能被有限个一阶句公理化的一个新的证明。(这一事实是由L. Ham和M. Jackson证明的一个一般定理的结果,与此事实相对应的是所有图类中所有二部图的紧性定理的一个众所周知的结果。)此外,为了证明我们的方法适用于数学的各个领域,我们证明了有限单群和细长半模格的连接不可约同余的有序集都不能用有限结构类中的有限多个公理来描述。自2007年G. Grätzer和E. Knapp的结果以来,细长半模格已经构成了晶格理论中最深入研究的部分,它们甚至已经在群论和几何中产生了结果。除了上述的非公理化结果外,我们给出了细长半模格的同余格的一个新的性质,称为可分解循环元性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyclic congruences of slim semimodular lattices and non-finite axiomatizability of some finite structures
. We give a new proof of the fact that finite bipartite graphs cannot be axiomatized by finitely many first-order sentences among finite graphs. (This fact is a consequence of a general theorem proved by L. Ham and M. Jackson, and the counterpart of this fact for all bipartite graphs in the class of all graphs is a well-known consequence of the compactness theorem.) Also, to exemplify that our method is applicable in various fields of mathematics, we prove that neither finite simple groups, nor the ordered sets of join-irreducible congruences of slim semimodular lattices can be described by finitely many axioms in the class of finite structures. Since a 2007 result of G. Grätzer and E. Knapp, slim semimodular lattices have constituted the most intensively studied part of lattice theory and they have already led to results even in group theory and geometry. In addition to the non-axiomatizability results mentioned above, we present a new property, called Decomposable Cyclic Elements Property, of the congruence lattices of slim semimodular lattices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信