{"title":"影响航空部门人力资源管理决策过程的准则分析——模糊逻辑方法","authors":"Filiz Mizrak","doi":"10.30518/jav.1331688","DOIUrl":null,"url":null,"abstract":"In today's fast-paced and ever-changing business landscape, effective decision-making is paramount to achieving success and maintaining a competitive edge. This holds particularly true in the aviation sector, where Human Resource Management (HRM) plays a pivotal role in optimizing workforce performance and ensuring operational efficiency. However, HRM decision-making processes are often confronted with multifaceted challenges that encompass various criteria and encompass both objective and subjective factors. To tackle this complexity, a novel and adaptive approach is needed. In this study, we employ a Fuzzy Logic Approach to analyze the criteria influencing decision-making processes in HRM within the aviation sector, aiming to provide a comprehensive and flexible decision-support system for HRM practitioners and contribute to the sector's overall performance and success. The contribution of this study lies in its innovative application of Fuzzy Logic to HRM decision-making in the aviation sector. By capturing the inherent uncertainties and vagueness that HRM practitioners encounter, the proposed Fuzzy Logic-based model offers a more robust and context-sensitive decision-support system. The insights derived from this research are expected to enhance the strategic management of human resources, leading to optimized workforce utilization, increased employee satisfaction, and improved organizational performance in the aviation industry.","PeriodicalId":86256,"journal":{"name":"The Journal of aviation medicine","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing Criteria Affecting Decision-Making Processes of Human Resource Management in the Aviation Sector - A Fuzzy Logic Approach\",\"authors\":\"Filiz Mizrak\",\"doi\":\"10.30518/jav.1331688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's fast-paced and ever-changing business landscape, effective decision-making is paramount to achieving success and maintaining a competitive edge. This holds particularly true in the aviation sector, where Human Resource Management (HRM) plays a pivotal role in optimizing workforce performance and ensuring operational efficiency. However, HRM decision-making processes are often confronted with multifaceted challenges that encompass various criteria and encompass both objective and subjective factors. To tackle this complexity, a novel and adaptive approach is needed. In this study, we employ a Fuzzy Logic Approach to analyze the criteria influencing decision-making processes in HRM within the aviation sector, aiming to provide a comprehensive and flexible decision-support system for HRM practitioners and contribute to the sector's overall performance and success. The contribution of this study lies in its innovative application of Fuzzy Logic to HRM decision-making in the aviation sector. By capturing the inherent uncertainties and vagueness that HRM practitioners encounter, the proposed Fuzzy Logic-based model offers a more robust and context-sensitive decision-support system. The insights derived from this research are expected to enhance the strategic management of human resources, leading to optimized workforce utilization, increased employee satisfaction, and improved organizational performance in the aviation industry.\",\"PeriodicalId\":86256,\"journal\":{\"name\":\"The Journal of aviation medicine\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of aviation medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30518/jav.1331688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of aviation medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30518/jav.1331688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analyzing Criteria Affecting Decision-Making Processes of Human Resource Management in the Aviation Sector - A Fuzzy Logic Approach
In today's fast-paced and ever-changing business landscape, effective decision-making is paramount to achieving success and maintaining a competitive edge. This holds particularly true in the aviation sector, where Human Resource Management (HRM) plays a pivotal role in optimizing workforce performance and ensuring operational efficiency. However, HRM decision-making processes are often confronted with multifaceted challenges that encompass various criteria and encompass both objective and subjective factors. To tackle this complexity, a novel and adaptive approach is needed. In this study, we employ a Fuzzy Logic Approach to analyze the criteria influencing decision-making processes in HRM within the aviation sector, aiming to provide a comprehensive and flexible decision-support system for HRM practitioners and contribute to the sector's overall performance and success. The contribution of this study lies in its innovative application of Fuzzy Logic to HRM decision-making in the aviation sector. By capturing the inherent uncertainties and vagueness that HRM practitioners encounter, the proposed Fuzzy Logic-based model offers a more robust and context-sensitive decision-support system. The insights derived from this research are expected to enhance the strategic management of human resources, leading to optimized workforce utilization, increased employee satisfaction, and improved organizational performance in the aviation industry.