PP-coir复合材料(PPCC):弯曲性能的制备与研究

Md Nazrul Islam, M. A. Gafur
{"title":"PP-coir复合材料(PPCC):弯曲性能的制备与研究","authors":"Md Nazrul Islam, M. A. Gafur","doi":"10.11648/J.MC.20190704.15","DOIUrl":null,"url":null,"abstract":"Today we are more concern about the environment. Synthetic polymers are the most responsible pollutant for environmental pollution. Good replacing agents for the synthetic polymers are the natural polymer. That is why the uses of natural fiber reinforced composites are increasing day-by-day. In this research natural polymer coir fiber was used as the reinforcing agent with the synthetic polymer polypropylene. PP-coir composites were fabricated using a simple hot press molding method. The prepared composites were characterized by the density, tensile, and flexural properties. The effect of fiber addition on some physical and mechanical properties was evaluated. The density increases with the increase of fiber addition. The tensile strength of fabricated product increases with the increase of fiber addition up to 10% (wt.) and then decreases continuously. The elongation of fabricated product decreases with the increase of fiber addition continuously. The changes in the mechanical properties were broadly related to the accompanying interfacial bonding of PP- coir composites (PPCC). It revealed that the introduction of short coir fiber led to a slightly improved thermo oxidative stability of PP- Coir composites. The flexural strain of fabricated product decreases continuously with the increase of fiber addition. But here untreated fiber reinforced composites show higher strain than that of treated fiber reinforced composites.","PeriodicalId":18605,"journal":{"name":"Modern Chemistry & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PP-coir Composites (PPCC): Fabrication and Study of Flexural Properties\",\"authors\":\"Md Nazrul Islam, M. A. Gafur\",\"doi\":\"10.11648/J.MC.20190704.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today we are more concern about the environment. Synthetic polymers are the most responsible pollutant for environmental pollution. Good replacing agents for the synthetic polymers are the natural polymer. That is why the uses of natural fiber reinforced composites are increasing day-by-day. In this research natural polymer coir fiber was used as the reinforcing agent with the synthetic polymer polypropylene. PP-coir composites were fabricated using a simple hot press molding method. The prepared composites were characterized by the density, tensile, and flexural properties. The effect of fiber addition on some physical and mechanical properties was evaluated. The density increases with the increase of fiber addition. The tensile strength of fabricated product increases with the increase of fiber addition up to 10% (wt.) and then decreases continuously. The elongation of fabricated product decreases with the increase of fiber addition continuously. The changes in the mechanical properties were broadly related to the accompanying interfacial bonding of PP- coir composites (PPCC). It revealed that the introduction of short coir fiber led to a slightly improved thermo oxidative stability of PP- Coir composites. The flexural strain of fabricated product decreases continuously with the increase of fiber addition. But here untreated fiber reinforced composites show higher strain than that of treated fiber reinforced composites.\",\"PeriodicalId\":18605,\"journal\":{\"name\":\"Modern Chemistry & Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Chemistry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.MC.20190704.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Chemistry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MC.20190704.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

今天我们更关心环境。合成聚合物是造成环境污染最主要的污染物。天然聚合物是合成聚合物较好的替代剂。这就是为什么天然纤维增强复合材料的使用日益增加的原因。本研究以天然高聚物椰壳纤维为补强剂,与合成高分子聚丙烯复合。采用简单的热压成型方法制备了PP-coir复合材料。对所制备的复合材料进行了密度、拉伸和弯曲性能表征。考察了纤维添加量对某些物理力学性能的影响。密度随纤维添加量的增加而增加。制品的抗拉强度随纤维添加量的增加而增大,最大可达10% (wt.),然后不断减小。随着纤维添加量的增加,制品的伸长率不断降低。力学性能的变化与PP- coir复合材料(PPCC)的界面结合密切相关。结果表明,短纤维的引入使PP- coir复合材料的热氧化稳定性略有提高。随着纤维添加量的增加,制品的弯曲应变不断减小。但未经处理的纤维增强复合材料的应变高于处理后的纤维增强复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PP-coir Composites (PPCC): Fabrication and Study of Flexural Properties
Today we are more concern about the environment. Synthetic polymers are the most responsible pollutant for environmental pollution. Good replacing agents for the synthetic polymers are the natural polymer. That is why the uses of natural fiber reinforced composites are increasing day-by-day. In this research natural polymer coir fiber was used as the reinforcing agent with the synthetic polymer polypropylene. PP-coir composites were fabricated using a simple hot press molding method. The prepared composites were characterized by the density, tensile, and flexural properties. The effect of fiber addition on some physical and mechanical properties was evaluated. The density increases with the increase of fiber addition. The tensile strength of fabricated product increases with the increase of fiber addition up to 10% (wt.) and then decreases continuously. The elongation of fabricated product decreases with the increase of fiber addition continuously. The changes in the mechanical properties were broadly related to the accompanying interfacial bonding of PP- coir composites (PPCC). It revealed that the introduction of short coir fiber led to a slightly improved thermo oxidative stability of PP- Coir composites. The flexural strain of fabricated product decreases continuously with the increase of fiber addition. But here untreated fiber reinforced composites show higher strain than that of treated fiber reinforced composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信